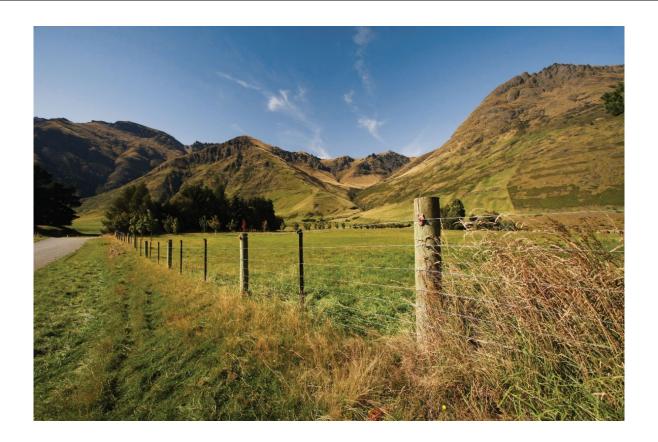


Nutrient Budget Report


2022-2023 Year End

Prepared by Jennifer Armstrong Principal Farm Environmental Consultant

Lincoln University - Dairy Farm PO Box 85094 Lincoln University Christchurch 7647

Customer Number:7095663Date:2nd February 2024Reviewed by:Arron Hutton (CNMA)

Executive Summary

This document reports on the 2022-23 year end period for Lincoln University Dairy Farm (LUDF), which is located at 1504 Shands Road, Lincoln. Overseer[®]FM version 6.5.4 (v5.9.1) has been used to create the nutrient budget presented in this report. The property has a total consented area of 168.2 ha (160.4 ha effective) and operated as an irrigated dairy property during the 2022-23 year end period. This document is for the purpose of providing current modelled nutrient loss values for year-end reporting for LUDF.

The farm holds land use consent CRC180605 to use land for a farming activity. The property is located within the Selwyn Te Waihora Nutrient Allocation Zone of Canterbury's Land and Water Regional Plan. The property also holds effluent consent CRC143396, and groundwater irrigation consent CRC010786, both were active during the reporting year.

The month end date used for the year end 2022-23 nutrient budget was June, which was the end month used in the baseline files, and therefore allows for a comparison of N loss against the baseline files and previous year end files. As a result, the farm system from the 1st July 22 - 30th of June 23 has been captured.

During the 2022-23 season LUDF had an irrigated area of 160.4 ha: 120 ha of pivot, 8.4 ha of fixed grid, 9.9 ha of k line, and 22.1 ha of long line lateral irrigated area. The Friesian x Jersey dairy cows were milked with a 10 milkings in 7 days variable regime throughout the season. The herd was grazed on pasture, and additional pasture baleage was fed to assist production goals.

The key influences on Nitrogen loss for the farm are :

- Soil type, drainage, and Profile Available Water (PAW)
- Irrigation method and management
- Nitrogen Use

The year end 2022-23 modelled nutrient losses (N and P), are summarised in Table 1, below.

Table 1 - Modelling Results

	Year End 2022-23
System Type	Dairy
Area (ha)	168.2
Nitrogen leaching loss to water (total kg N)	4,378
Nitrogen leaching loss to water (kg N/ha)	26
Phosphorus runoff to water (total kg P)	168
Phosphorus runoff to water (kg P/ha)	1.0

Contents

Executive Summary	2
Contents	3
Abbreviations	4
Important Points to Note	5
Introduction	6
Property Details	6
Farm Maps	7
Farm System Analysis	9
2022-2023 Year End Farm System	9
Soils	9
Soil Fertility	10
Stock System Information (Dairy)	11
Pasture Fertiliser	12
Pasture Species and Production	14
Irrigation Systems and Management	15
Effluent	17
Supplements	17
Existing Resource Consent Information	17
Summary of Nutrient Loss Indicators	18
Discussion on Nutrient Loss Indicators	19
Soil type, drainage and Profile Available Water (PAW)	19
Irrigation method and management	19
Whole Farm Greenhouse Gas (GHG) Emissions Profile	20
Appendix List	21
Maps	22
Overseer [®] FM Output	26

Abbreviations

General

Refer to irrigation map	in Appendices for further information
North Pivot	Pivot 1 irrigated area located on the North block
North Pivot 2	Pivot 2 irrigated area located on the North block
North Pivot 3	Pivot 3 irrigated area located on the North block
North Block Fixed Grid	Fixed Grid irrigated area located on the North block
South Block Sprinklers	Long – line lateral sprinkler irrigated area located on the South block
South Pivot	Pivot irrigated area located on the South block
Effluent Block Pivot	Pivot 1 liquid effluent area located on the North block
Eff	Effluent Area (spread via gun)
Non-Eff	Non Effluent Area
PL	Plantain
LUDF	Lincoln University Dairy Farm
PET	Potential Evapotranspiration

Overseer® FM Blocking Names Protocol

Block name > Irrigation Type > Effluent or non-effluent > Soil Type >Plantain (or blank)

No crop blocks were modelled in the 2022-23 year end nutrient budget as per client provided information.

Soils

See Table 3 for Soils Information

Important Points to Note

- 1. Ravensdown grants permission for this document to be used for purposes such as land sale and purchase, land lease, or for territorial authority consenting purposes.
- 2. This document, together with the services provided by Ravensdown in connection with this document, is subject to the Ravensdown Environmental standard Terms of Engagement.
- 3. This Plan complies with the industry standard "Code of Practice for Nutrient Management (with emphasis on Fertiliser Use)" (hereafter referred to as 'the code'). The Code can be found on-line in full at: http://www.fertiliser.org.nz/Site/code of practice

Disclaimer

Ravensdown is not liable for any loss, damage or other disadvantage of any form suffered by the Customer or any third party arising in any way from this document or the services provided by Ravensdown in connection with this document, whether in contract, tort or otherwise.

Copyright

You may copy and use this report and the information contained in it so long as your use does not mislead or deceive anyone as to the information contained in the report and you do not use the report or its contents in connection with any promotion, sales or marketing of any goods or services. Any copies of this report must include this disclaimer in full.

Use of this document

- Ravensdown has granted to its customer a limited licence to use this document. This licence enables the customer to possess, use, copy and distribute this document for the specific purposes for which the document was prepared by Ravensdown. This licence does not permit any alteration of this document in any way, or the document to be copied, distributed or disseminated other than in its entirety.
- If you are not the customer, to be able to lawfully use or rely on this document you must have been authorised to do so by Ravensdown or its customer. Your use of this document is subject to the same limitations as apply to the customer, as set out above.

Jennifer Armstrong Principal Farm Environmental Consultant Dated: 2nd February 2024

Introduction

This document reports on the2022-23 year end period for Lincoln University Dairy Farm (LUDF), which is located at 1504 Shands Road, Lincoln. Overseer®FM version 6.5.4 (v5.9.1) has been used to create the nutrient budget presented in this report. The property has a total consented area of 168.2 ha (160.4 ha effective) and operated as an irrigated dairy property during the 2022-23 year end period.

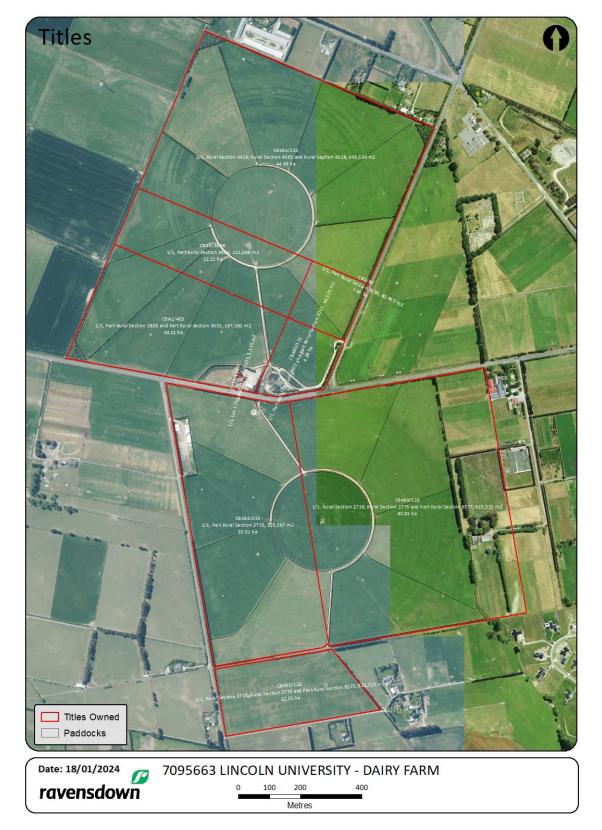
The farm holds land use consent CRC180605 to use land for a farming activity. The property is located within the Selwyn Te Waihora Nutrient Allocation Zone of Canterbury's Land and Water Regional Plan. The property also holds effluent consent CRC143396, and groundwater irrigation consent CRC010786, both were active during the reporting year.

The month end date used for the year end 2022-23 nutrient budget was June, which was the end month used in the baseline files, and therefore allows for a fair comparison of N loss against the baseline files and previous year end files. As a result, the farm system from the 1st July 22 - 30th of June 23 has been captured.

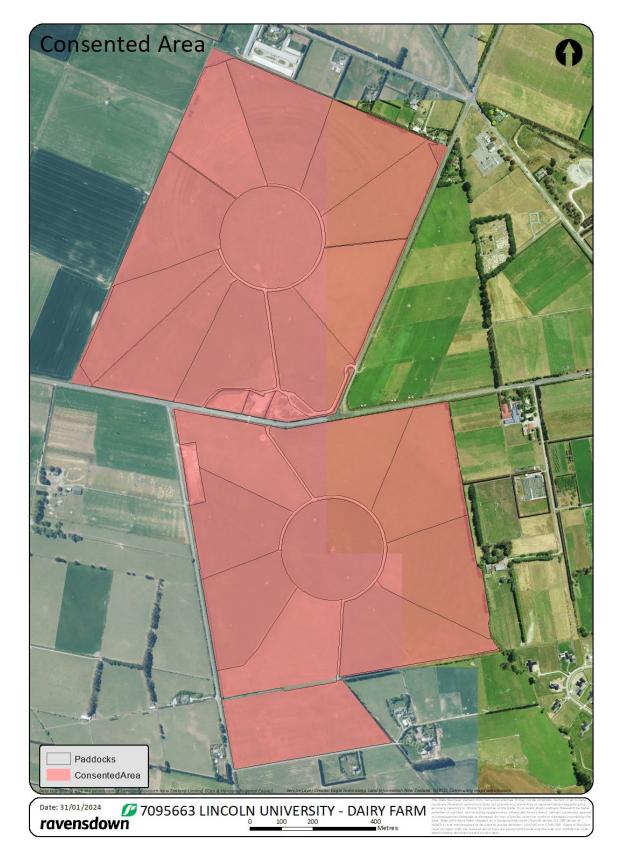
Overseer[®]FM modelling of the 2022-23 system has been undertaken in accordance with the Overseer[®]FM 6.5.4 (v5.9.1) "user guide" and has been reviewed by a certified nutrient management advisor. The following report summarises the respective Overseer[®]FM 6.5.4 (v5.9.1) nutrient budgets and key assumptions made.

Property	Details				
Location address	1504 Shands Road, Lincoln 7647				
Legal description RS6028; RS4565; RD4426; Part RS3684; Part RS3031; Part RS2803; RS2719; RS2775; RD2718; Part RS6377					
Total consented area (ha)	168.2				
Overseer [®] FM blocked area (ha)	164.8, inc. plantings (1.3 ha) and House (3.1 ha)				
Effective area (ha)	160.4				
Topography	Flat				
Rainfall (mm/yr)	609				
Temperature (°C)	12.1				
PET (mm/yr)	923				
Latitude/Longitude	-43.6444; 172.4433				
Distance from coast (km)	30				

Property Details


Table 2 - Property Information

Climate information is from the climate data tool in Overseer.


Farm Maps

Map 1 – Farm Titles Map

Map 2 - Consented Area Map (modelled area)

Farm System Analysis

2022-2023 Year End Farm System

LUDF has a total consented area of 168.2 ha, an effective pastoral area of 160.4 ha, the remaining 'blocked' area as modelled in Overseer®FM comprises of 1.3 ha of trees and scrub, and 3.1 ha of house. The non-productive area of 3.4 ha is made up of a dairy shed and associated yards/infrastructure, buildings, trees, and laneways. Modelled areas have remained the same as previous year end modelling. The property consists of flat topography, and during the 2022-23 year end period operated as an irrigated seasonal supply dairy farm, with dry dairy cows wintered off farm and replacement heifers off farm from weaning. In accordance with previous nutrient budget work completed for the property, the year-end has been modelled with a June end date and therefore a reporting period of 1st of July 2022 through to the 30th of June 2023 has been modelled.

Soils

There are seven soil types present on the property as shown in the table below. Soil effective areas per block remain in line with the baseline modelling. The sibling name for the soil types are used throughout this report when referring to different blocks. Each block name contains the soil type of such block.

Sibling Name	Eff Area (ha)	Soil Order	Texture	Drainage	PAW 0-60cm
Flax_4a.1	39.0	Gley	Gley Silt over clay Poorly drained		105
Waka_3a.1	32.8	Pallic	Pallic Silt over sand Imperfectly drained		99
Waka_1a.1	31.4	Pallic	Silt	Imperfectly drained	96
Temp_1a.1	26.6	Pallic	Silt	Moderately well drained	99
Temp_2a.1	11.4	Pallic	Silt	Moderately well drained	
Barr_5a.1	10.0	Pallic	Loam over sand	Well drained	99
Temp_4a.1	9.2	Pallic	Silt Moderately well drained		105
Total effective	160.4				

Table 3 - Soils

Information sourced from OverseerFM

Soil Fertility

Soil test results have been calculated based on the most recent soil tests taken (being in June 2022 and July 2023). Soil test results have been averaged across paddocks contained in each management block, being 'effluent' and 'non effluent', and have been modelled as tabulated below.

Block	Olsen P	к	Са	Mg	Na	Org-S
Non Effluent	34	10	11	32	11	9
Effluent	38	18	11	34	10	8

Table 4 - Soil Fertility

Stock System Information (Dairy)

Lincoln University Dairy Farm milking herd details modelled in the 2022-23 year end are based on information provided by Peter Hancox. Stock movements after calving have been modelled on the 16th of each month, with the exception of; 469 animals modelled as off farm from the 28th May. Monthly animal numbers have been modelled. No breeding bulls were on farm during the season.

Dairy

Table 5 - Dairy Herd

Herd		2022-23	Year End Farm System				
	Breed		FxJ				
	Mean calving date		8 th August				
	Dry-Off date	28 th May					
	Peak cows (1 December)	537					
Average live weight (kg)			541				
		Month	# Milking Cows	In shed feeding (Y/N)			
		July 2022	95	N			
		Aug 2022	430	N			
Cows	Cow Numbers	Sept 2022	527	N			
		Oct 2022	539	Ν			
		Nov 2022	539	N			
		Dec 2022	539	N			
		Jan 2023	537	N			
		Feb 2023	534	N			
		Mar 2023	530	Ν			
		Apr 2023	525	N			
		May 2023	408	N			
		Jun 2023	-	-			
	Production kg/MS		247,291				
	Lactation length (days)		293				
Dairy Information	Once a day milking	10 in 7 (modelled as 'once a day milking – half the season')					
	Calves fed milk powder		No				
	Rate %		28				
Replacements	On/off farm when	All replacements remain	on farm until they join the m	ilking herd.			

Note: numbers reported are what are on farm as at month end. Movements within the month are reported in Overseer®FM.

Pasture Fertiliser

Fertiliser modelled as applied to pasture has been based on information recorded in the LUDF Hawkey account for the 2022-23 period for 1st July 22 - 30th of June 23.

Fertiliser has been modelled the same across all blocks due to the change in effluent infrastructure during the year end period. This modelling is in line with Agronomy Plans as prepared for the 2022-23 season. Therefore, fertiliser has been calculated from per-paddock applications in Hawkeye, averaged across all effective pasture areas, and applied the same across each management block.

It's important to note that, due to the prorating of fertiliser applications across paddocks, application rates may appear slightly lower than the actual amounts applied. The nitrogen content of Flowfert N has been calculated at 18% N.

It should also be noted that fertiliser recorded as purchased under the LUDF Ravensdown account, was also applied to additional blocks owned by the client. It is assumed that these blocks correspond to those recorded in the client's Hawkeye account, and as such, fertiliser applications documented in Hawkeye have been deducted from the total NPKS purchases. This modelling approach, coupled with the underlying assumptions, has resulted in slight discrepancies when comparing against NPKS fertiliser purchase records.

Block	Total kg N	Total kg P	Total kg S	
LUDF (modelled)	28,589	5,775	10,152	
Other Blocks (not modelled)	3,901	601	739	
Total combined NPKS (as calculated from Hawkeye)	32,490	6,376	10,891	
Purchased	32,682	7,195	11,067	

Table 6 – Total NPKS modelled vs purchased

Fertiliser applications modelled have been tabulated on the following page:

Pasture Fertiliser

Table 7 - Fertiliser

	Whole Farm									
Month		Kg/ha	N	Р	к	S				
	Product	or L/ha	Kg N/ha	Kg P/ha	Kg K/ha	Kg S/ha				
Sept 22	Ammo 31	53	16			7				
Sept 22	Sulphur Super 15	202		17		30				
Sept 22	Superphosphate	207		19		23				
Sept 22	Urea	7	3							
Sept 22	Flowfert N	57	10							
Oct 22	Ammo 31	24	7			3				
Oct 22	Urea	50	23							
Nov 22	Urea	52	24							
Dec 22	Urea	47	22							
Jan 23	N Protect	49	22							
Feb 23	N Protect	24	11							
Mar 23	Urea	29	13							
Mar 23	Urea	10	5							
Apr 23	Urea	47	22							
	TOTAL		178	36		63				

Pasture Species and Production

The predominant pasture species on farm was ryegrass/white clover. There was 8.2 ha of pure plantain pasture sward, these blocks have been labelled with 'PL' in Overseer®FM blocking and modelled as plantain crop.

Relative productivity across pasture blocks has been modelled the same as previous year end modelling to maintain consistency standards.

Table 8 - Pasture

Block Name	Relative Productivity	Overseer [®] FM assumed Utilisation %	Overseer [®] FM Estimated Pasture Production TDM/ha/yr	
Irrigated pasture	1	85	18.9	

It should be noted that this estimated pasture production is based on default South Island pasture ME values and may be different to actual ME values and actual utilisation values on this farm which in turn would influence estimated pasture production.

Irrigation Systems and Management

During the 2022-23 year end period all of the effective pastoral area, at 160.4 ha was modelled as irrigated; 120 ha via pivot, 8.4 ha via fixed grid, 9.9 ha via k line and 22.1 ha via long line lateral irrigated area. Please refer to 'Irrigation Map', in appendices, for further information regarding the location of irrigation on farm. Its should be noted that an area of long line lateral was converted into fixed grid during the 2022-23 year end period, however this was not modelled due to not being utilised in the modelled period.

The property holds groundwater consent CRC010786, which was active during the 2022-23 year end period; The rate at which water is taken from bore M36/3067, 305 millimetres diameter and 93.0 metres deep, at or about map reference NZMS 260 M36:659-288, shall not exceed 98 litres per second.

Soil Moisture Monitoring was used on farm during the 2022-23 period, with four Aquaflex soil moisture tapes installed across the four primary soil types (being, Flax_4a.1, Waka_3a.1, Waka_1a.1, and Temp_1a.1). The North Pivot 1 also has variable rate irrigation. The modelling of soil moisture triggers and targets aligns with information provided by the client. Irrigation modelling is based on average application rates per irrigation type obtained from bucket tests, as recorded in the clients Farm Environmental Plan (FEP).

An Overseer[®]FM estimated annual volume supplied of approximately **720,046 m³** has been modelled for the 2022-23 year end system.

¹Prior to 2015 the client also held CRC916834, however this was transferred to another property owned by the client, referred to as the Ashley Dene Research Development Station and is now incorporated into consent CRC153973.

The irrigation rate, return period and annual application rates are given in the table on the following page:

ravensdown environmental

Table 9 - Irriga	ition									
Irrigation type		Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Overseer Estimated annual Volume applied (mm/yr)
N	Min Depth mm/pass	5	5	5	5	5	5	5	5	
North pivot	Min Return (days)	1	1	1	1	1	1	1	1	450
	Trigger (mm deficit)	25	25	25	25	25	25	25	25	
	Depth mm/pass	5	5	5	5	5	5	5	5	
Pivot 2 & 3	Return (days)	1	1	1	1	1	1	1	1	445
	Trigger (mm deficit)	30	30	30	30	30	30	30	30	
	Depth mm/pass	6	6	6	6	6	6	6	6	
South pivot	Return (days)	1	1	1	1	1	1	1	1	450-456
p	Trigger (mm deficit)	25	25	25	25	25	25	25	25	
	Depth mm/pass	6	6	6	6	6	6	6	6	
Fixed grid	Return (days)	3	3	3	3	3	3	3	3	402-408
	Trigger (mm deficit)	20	20	20	20	20	20	20	20	
Spray lines & K -	Depth mm/pass	35	35	35	35	35	35	35	-	
	Return (days)	8	8	8	8	8	8	8	-	455
Line	Trigger (mm deficit)	40	40	40	40	40	40	40	-	

7095663_Lincoln University Dairy Farm_2022-2023 Year End

ravensdown environmental

Effluent

The farm holds CRC143396 to discharge effluent to land, please refer to ECan website for further information related to this consent.

During the reporting period the effluent system was undergoing an upgrade, including the installation of a solid separator and a 1-million-litre holding pond. However, this upgrade, along with the ClearTech[®] system, was not operational during the modelled 2022-23 season. Effluent management for the 2022-23 season in Overseer[®]FM has been modelled with a 'holding pond' without solid separation. The liquid effluent has been modelled as 'spray regularly' throughout the year at an application depth of less than 12mm. The application of liquid effluent was carried out through an underslung system under North Pivot (32.8 ha) and via a gun across 65.5 ha, resulting in a total effluent application area of 98.3 ha. Solids from the pond were emptied during the year, and this has been modelled as exported as they were applied to run-off blocks not included in the LUDF area. For more information on liquid effluent areas, please refer to the 'Effluent Map' in the appendices.

Supplements

321 t DM of purchased baleage was fed during the 2022-23 season, no supplement was harvested during the season.

Existing Resource Consent Information

Table 10 - Resource Consents

Consent #	Activity	Commencement Date	Expiry Date
CRC143396	to discharge contaminants to land and air	03 Apr 2009	31 Mar 2044
CRC010786	to take and use groundwater.	04 Dec 2000	31 Jan 2035

Summary of Nutrient Loss Indicators

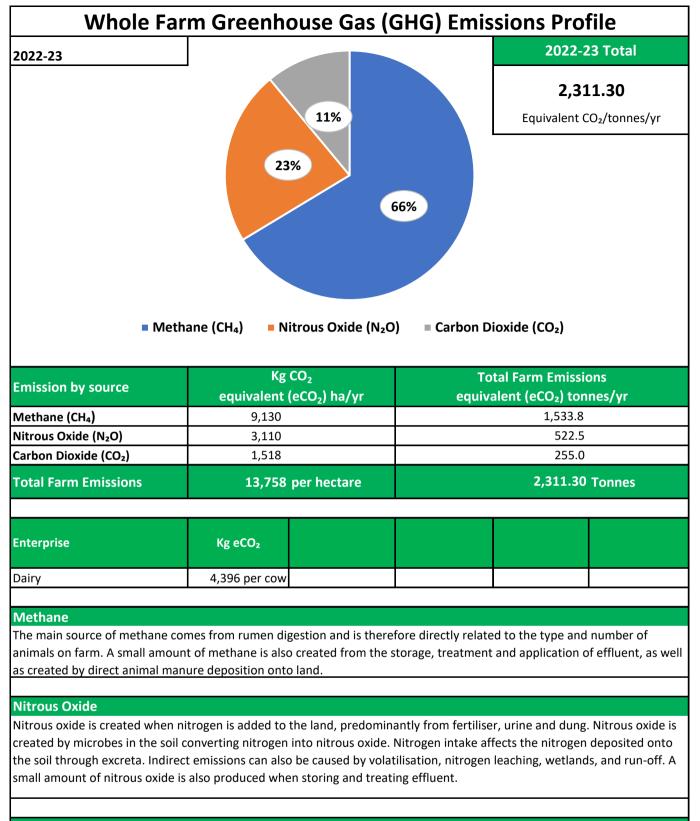
Table 11 - Nutrient Loss Indicators

	Year End 2022-23
System Type	Dairy
Area (ha)	168.2
Nitrogen leaching loss to water (total kg N)	4,378
Nitrogen leaching loss to water (kg N/ha)	26
Phosphorus runoff to water (total kg P)	168
Phosphorus runoff to water (kg P/ha)	1.0

Discussion on Nutrient Loss Indicators

The key influences on Nitrogen loss are discussed below:

Soil type, drainage and Profile Available Water (PAW)


The soil type has a large impact on N leached. The Profile Available Water (PAW) values for the property ranged from 96 through to 107 at 0-60 cm (Waka_1a.1 and Temp_2a.1, respectively). The Profile Available Water is described as "the amount of water potentially available to plant growth that can be stored in the soil to specific soil depths". It therefore makes sense that the soils with the lowest PAW will have higher N leaching as there will be more drainage from these soils. Soils with lower PAW are less able to buffer against changes in nitrogen losses to the bottom of the root zone (from stocking rates, crop yields, irrigation volumes) as the soils typically have larger pores and are flushed frequently as compared to a soil with a higher PAW. There is a range of soils and drainage on farm from poorly drained to well drained.

Irrigation method and management

The irrigation method and volume applied can have an impact on N leaching, particularly when coupled with the soil type and PAW information for a block. Lowering the application depth per pass of irrigation types can reduce the risk of drainage events occurring and depending on the soil moisture deficit at irrigation events, provide more flexibility of the soil to store rainfall that may occur after irrigating. A reduction in drainage typically transfers to a reduction in modelled N loss assuming all other factors remain the same because water in drainage acts as a vector to move nitrogen down through the soil profile. The farm utilises several soil moisture monitoring probes on different soils, which increases the efficiency of water usage.

Fertiliser N

Year End 2022-23 whole farm N use was 170 kgN/ha/yr. If nitrogen application rates lead to a surplus in the soil, there is a greater risk of leaching. N surplus for the property is 249 kg/ha.

Carbon Dioxide

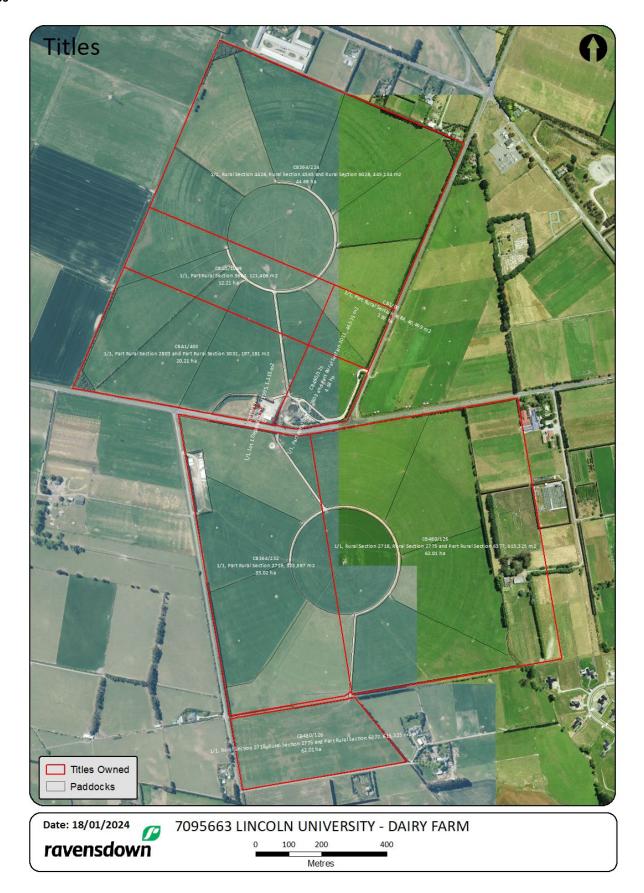
Carbon dioxide is produced in the use of fossil fuels. Examples of sources on farm include; any electricity use, fuel use for machinery and tractors, N fertiliser and lime manufacture, dissolution and spreading, making and feeding supplements, animal transport, refrigeration, chemical usage.

Disclaimer

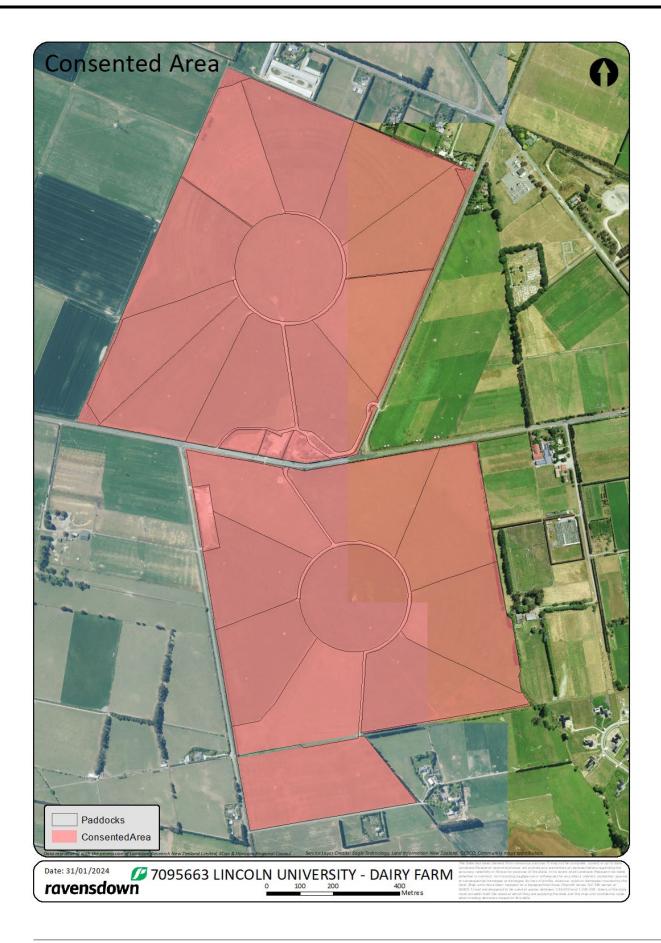
The above report presents the farms' modelled GHG profile, as predicted by the farm system information provided by the farmer. The GHG calculations are based on national and international default emission factors. Ravensdown is not liable for any loss, damage or other disadvantage of any form suffered by the customer or any third party arising in any way from this information. The report provides an indication of the current farm GHG profile and does not aim to provide mitigation solutions to lowering GHG profile, which are still being developed. Descriptive information was sourced from MPI, NZAGRC, MFE.

Appendix List

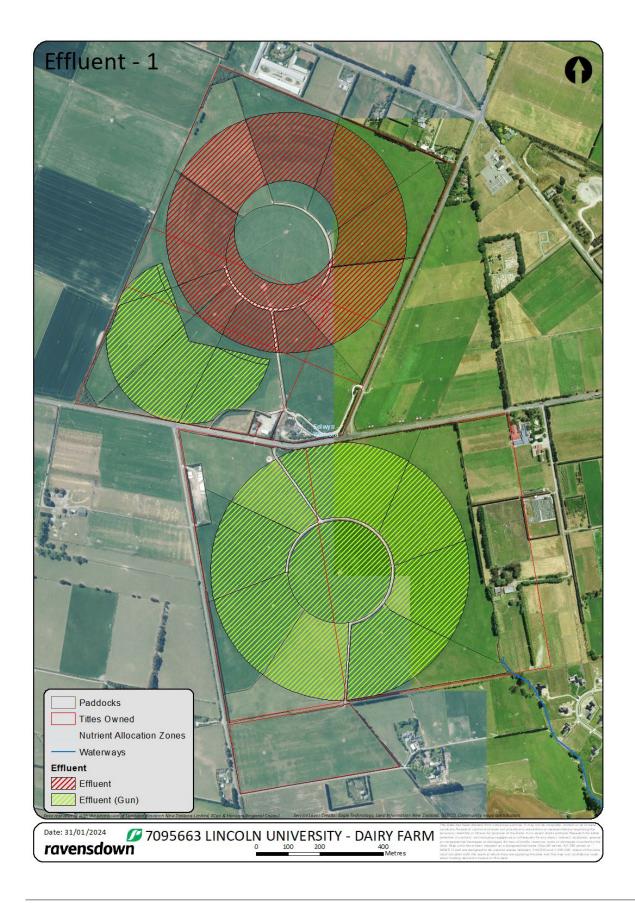
Maps

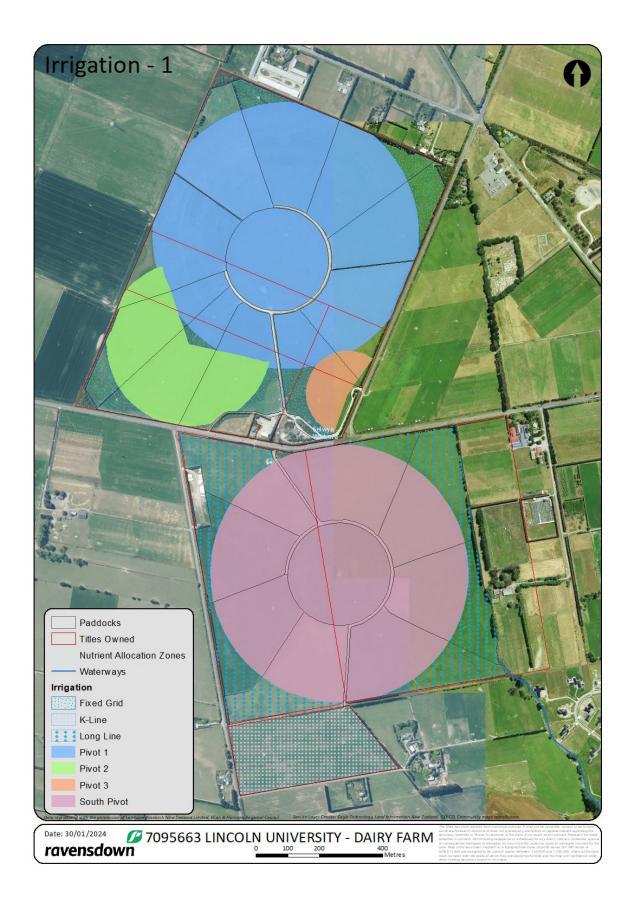

Title Consented Area Soil Effluent Irrigation

Overseer®FM Output


Farm Details Farm Results Analysis Comments Blocks Farm Soils Enterprises Supplements Crops Fertiliser Irrigators Structures/Effluent System Nutrient Budgets Effluent Report

ravensdown environmental


Maps


ravensdown environmental

DISCLAIMER: This Report has been prepared solely for registered users of Overseer who download it from the Overseer application, and have accepted Overseer's Terms of Use. While reasonable efforts have been made to ensure that the Overseer software model used to prepare this Report keeps up with the latest scientific research, Overseer Limited gives no warranties, representation or guarantees, express or implied in relation to the quality, reliability, accuracy and/or fitness for any purpose of the Report. Overseer Limited expressly disclaims and assumes no liability whatsoever arising directly or indirectly from the use of, or reliance on this Report.

COPYRIGHT: With the exception of user-supplied data, this Report is © 2018 Overseer Limited. All rights reserved. You may copy and distribute this Report in its entirety, as long as you do not mislead anyone as to its origin or implications, and provided you do not remove or alter the disclaimer above or this copyright notice.

Solution OverseerFM

LINCOLN UNIVERSITY - DAIRY FARM

1505 Shands Rd, Lincoln 7674, New Zealand

Year ending 2023

Analysis type	Year end
Is publication	No
Application version	5.11.0
Printed date	2 Feb 2024, 6:31PM
Model version	6.5.4

Farm details	N	26 kg/ha 4,	378 kg	Р	1 kg/ha 168 kg	бна	13,758 kg/ha	2,311.3 tonnes	NCE: 29	v6.5.4
Total area		168.2 ha								
Productive block area		160.40 ha								
Nitrogen conversion efficiency	(NCE)	29%								
N Surplus	Z	.49 kg/ha								
Region	Ca	anterbury								
Total liveweight brought (kg/ł	na graze	d) 448	8 Mi	lk solids	(kg/ha grazed)		1542			
Total liveweight reared (kg/ha	grazed)	9.	1 Mi	lking her	rd size (peak cows/	'ha graze	ed) 3.4			
Total liveweight sold (kg/ha g	razed)	509) Da	iry stock	rate (RSU)		5070			
Milk production per cow (kg m	ilk solid	5 / cow) 458.8	B Da	iry repla	cements stock rate	e (RSU)	0			

Blocks

NAME		TYPE	AREA (HA)	N LOSS	N LOSS/HA	N IN DRAINAGE (PPM)	N SURPLUS/HA	P LOSS	P LOSS/HA	BLOCKED AREA %	N FARM LOSS
	Effluent block pivot (Barr_5a.1)`	Pasture	6.6	206	31	17	239	3	0.5	4	
Ŵ	Effluent block pivot (Temp_1a.1)	Pasture	13.4	400	30	16	238	7	0.5	8	
Ĩ	Effluent block pivot (Temp_2a.1)	Pasture	2.6	75	29	16	238	1	0.5	2	
Ŵ	Effluent block pivot (Temp_4a.1)	Pasture	2.1	61	29	16	238	1	0.5	1	
Ĩ	Effluent block pivot (Waka_3a.1)	Pasture	8.1	242	30	16	238	6	0.7	5	
	K-line block (Flax_4a.1)	Pasture	9.9	225	23	12	208	5	0.5	б	
Ŵ	North Pivot 2 - Eff (Waka_1a.1)	Pasture	5.9	173	29	17	238	4	0.7	4	
Ť	North Pivot 2 - Eff (Waka_3a.1)	Pasture	6.9	203	29	17	237	5	0.7	4	
	North Pivot 2 - Eff (Temp_1a.1)	Pasture	1.2	35	29	17	238	1	0.5	1	
Ŵ	North Pivot 3 (Waka_3a.1)	Pasture	0.7	19	27	16	202	0	0.6	0	
Ŵ	North Pivot 3 - Eff (temp_1a.1)	Pasture	2.7	79	29	17	238	1	0.5	2	
Ŵ	North block Fixed grid (Temp_1a.1)	Pasture	2	63	31	16	205	1	0.4	1	
Ŵ	North block Fixed grid (Temp_2a.1)	Pasture	2.4	74	31	16	204	1	0.4	1	
Ĩ	North block Fixed grid (Temp_4a.1)	Pasture	2.7	83	31	16	205	1	0.4	2	
Ŵ	North block Fixed grid (Waka_1a.1)	Pasture	1	32	32	16	205	1	0.5	1	
Ŵ	North block Fixed grid (Waka_3a.1)	Pasture	0.3	9	31	16	204	0	0.5	0	
Ŵ	North pivot - non eff (Barr_5a.1)	Pasture	3.4	99	29	16	204	1	0.4	2	
	North pivot - non eff	Pasture	7.3	202	28	15	203	3	0.5	4	

NAME		TYPE	AREA (HA)	N LOSS	N LOSS/HA	N IN DRAINAGE (PPM)	N SURPLUS/HA	P LOSS	P LOSS/HA	BLOCKED AREA %	N FARM LOSS 9
	(Temp_1a.1)										
	North pivot - non eff (Temp_2a.1)	Pasture	4.6	123	27	15	203	2	0.4	З	
	North pivot - non eff (Temp_4a.1)	Pasture	4.4	118	27	15	203	2	0.4	3	
	North pivot - non eff (Waka_3a.1)	Pasture	1.3	36	28	15	203	1	0.6	1	
	South block sprinklers (Flax_4a.1)	Pasture	9.9	225	23	12	208	5	0.5	6	
	South block sprinklers (Temp_2a.1)	Pasture	1.8	45	25	14	204	1	0.4	1	
	South block sprinklers (Waka_1a.1)	Pasture	3.8	98	26	14	205	2	0.6	2	
	South block sprinklers (Waka_3a.1)	Pasture	6.6	172	26	14	203	4	0.6	4	
	South pivot - Eff (Flax_4a.1)	Pasture	17	452	27	15	240	9	0.6	10	1
	South pivot - Eff (Waka_1a.1)	Pasture	14.7	446	30	16	239	10	0.7	9	1
	South pivot - Eff (Waka_3a.1)	Pasture	8.9	266	30	16	238	6	0.7	5	
	South pivot - Eff (Waka_1a.1) PL	Pasture	6	57	10	8	191	0	0	4	
	South pivot - Eff (Flax_4a.1) PL	Pasture	2.2	17	8	7	189	0	0	1	
	Dairy	House	3.1	16	5	0	0	2	0.5	2	
	Plantings	Trees and scrub	1.3	4	3	0	0	0	0.1	1	
	Other sources	Other	_	23	_	-	-	80	_	-	

Farm soils

S-MAP REF/NAME	GROUP/ORDER	DRAINAGE CLASS	MODIFIED	TOTAL AREA (HA)	% OF PROD. BLOCKS	BLOCKS
Barr_5a.1	Recent/YGE/BGE/Pallic	Well	No	10	6.2	2
Flax_4a.1	Sedimentary/Gley	Poor	No	39	24.3	4
Temp_1a.1	Recent/YGE/BGE/Pallic	Moderately well	No	26.6	16.6	5
Temp_2a.1	Recent/YGE/BGE/Pallic	Moderately well	No	11.4	7.1	4
Temp_4a.1	Recent/YGE/BGE/Pallic	Moderately well	No	9.2	5.7	3
Waka_1a.1	Recent/YGE/BGE/Pallic	Imperfect	No	31.4	19.6	5
Waka_3a.1	Recent/YGE/BGE/Pallic	Imperfect	No	32.8	20.4	7

Enterprises

STOCK NUMBERS

NAME	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN
릈 Dairy	95	430	527	539	539	539	537	534	530	525	-	-
Milking herd Class: Milking herd Breed: Friesian Jersey Cross Median calving date: 8 August Drying off date: 28 May	95	430	527	539	539	539	537	534	530	525	-	-

RSU

NAME	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN
🛲 Dairy	20	302	516	589	570	628	591	504	524	468	357	0

Irrigators

NAME	AREA COVERED	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN
SOLID SET Fixed grid	8.4 ha			r el	r el	r ≪	r el	r el	r eference of the second seco	r el	r eference of the second seco		
SPRAYLINES K LINE	9.9 ha			ট্র	Ţ	Ţ	Ā	Ţ	Ţ	Ţ			
LINEAR AND CENTRE PIVOT North pivot	53.8 ha			A		A		A		A	A		
LINEAR AND CENTRE PIVOT Pivot 2 + 3	17.4 ha			A		A	A.	A		A	A		
LINEAR AND CENTRE PIVOT South Pivot	40.6 ha			A		A	A	A ^{TTT}			A		
SPRAYLINES Spraylines 2	22.1 ha			ŢŢ	ŢŢ	Ţ	Ţ	ĮĮ	ŢŢ	ŢŢ			

Structures

NAME	JUL	AUG	SEP	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN
Dairy Effluent System - Holding Pond Sol	ids: None.	Pond: Ot	her (Expo	rted) Liqi	uid: Spray	Regularly	r					

Supplements

CATEGORY	FEED	SOURCE	DRY WEIGHT?	AMOUNT	DESTINATION
<u>í</u> Silage	Pasture good quality silage	Purchased (321)	Yes	321 tonnes	Dairy (321)

Crops

CROP/PASTURE	AREA (HA)	YIELD	GROWN (T/DM/YR)	INTAKE (T/DM/YR)	SUPPLEMENTS (T/DM/YR)
Ryegrass/white clover	152.2	-	2883	2450	-
Vantain	8.2	-	155	132	-

Fertiliser

MANUFACTURER/MATERIAL	NAME	TOTAL APPLIED (KG)	Ν	Р	К	S	CA	MG	NA
Ravensdown	Ammo 31	12,351	3,755	-	-	1,704	-	-	-
Custom soluble fertiliser	Super/SS15	-	_	-	_	_	-	_	_
o Ravensdown	Urea	38,817	17,856	-	-	-	-	-	-
o Ravensdown	N-Protect	11,709	5,375	-	-	-	-	-	-
o Ravensdown	Sulphur Super 15	32,401	_	2,786	-	4,795	6,221	-	-
o Ravensdown	Superphosphate	33,203	-	2,988	-	3,652	6,641	-	-
Custom soluble fertiliser	Flowfert N	33,203	1,604	-	-	_	-	-	-
TOTAL		161,683	28,589	5,775	-	10,152	12,862	-	-

GHG - Total farm emissions

METHANE GHG EMISSIONS	N20 GHG EMISSIONS	CO2 GHG EMISSIONS	TOTAL GHG EMISSIONS
1533.8 CO2-e tonnes/yr	522.5 CO2-e tonnes/yr	255 CO2-e tonnes/yr	2311.3 CO2-e tonnes/yr

Farm nutrient budget

LOSSES FROM ROOT ZONE

	TOTAL LOSS	5 (KG/YR)			LOSS PER HA (K	G/YR)				
Nitrogen	4,378				26					
Phosphorus	168				1					
NUTRIENTS ADDED (KG/HA/YR)		Ν	Р	к	S	CA	MG	NA		
Foliar sprays		0	0	0	0	0	0	0		
Fertiliser, lime and other	~	170	34	0	60	76	0	0		
Irrigation		11	0	7	11	40	9	40		
Supplements	~	49	4	42	4	8	3	2		
Rain/clover fixation	~	121	0	2	4	2	4	16		
NUTRIENTS REMOVED (KG/HA/YR)		N	Р	к	S	CA	MG	NA		
Leaching, runoff and direct losses	~	26	1	23	77	63	2	11		
As product		100	17	24	5	22	2	7		
As prunings		0	0	0	0	0	0	0		
Transfer	~	0	0	0	0	0	0	0		
Effluent exported		2	1	1	0	2	1	0		
To atmosphere	~	97	0	0	0	0	0	0		
As supplements and crop residues	~	0	0	0	0	0	0	0		
CHANGE IN POOLS (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Organic pool	~	126	16	5	-4	1	0	0		
Standing plant material		0	0	0	0	0	0	0		
Inorganic mineral	~	0	2	-22	0	-1	-2	-2		
Crop framework		0	0	0	0	0	0	0		
Inorganic soil pool		0	3	19	0	40	13	42		
Change in supplement storage		0	0	0	0	0	0	0		
Root and stover residuals		0	0	0	0	0	0	0		

Effluent report

• The report shows rates and target areas for farm liquid effluent only, assuming it is all applied to pastoral blocks. It excludes any farm solid effluent or imported effluent that may be added to effluent blocks. If this occurs, then target areas may need to be increased.

CURRENT AREA RECEIVING LIQUID EFFLUENT	
Total area including crops	90 ha
Pastoral area receiving liquid	90 ha
% of farm pastoral area	56%
Average liquid effluent	53 kg N/ha/yr
Average fertiliser	178 kg N/ha/yr
Average other	12 kg N/ha/yr
AREA OF FARM TO APPLY ALL EFFLUENT TO ACHIEVE RATES OF	
150 kg N/ha/yr - Liquid	32 ha - based on the amount of effluent generated on the the farm and sprayed from sump.
150 kg N/ha/yr - Solid	0 ha
150 kg N/ha/yr - Total	32 ha
Maintenance K	167 ha
100 kg K/ha/yr	57 ha
SOURCE OF N IN EFFLUENT BLOCK(S)	
Effluent from farm dairy	95%
Effluent from Feed pad	0%
Effluent from Standoff pad	0%
Effluent from wintering pad(s)	0%
Solids	0%
Exported	5%

Blocks

Effluent block pivot (Barr_5a.1) Pasture - Flat, 6.6 ha

BLOCK DETAILS											
Area	6.6 ha	Average temp	Average rainfall	609 mm/yr	Annual PET	923 mm/yr	Latitude	-43.6444	Longitude	172.4433	
Distance	30										

31 kg/ha | **206** kg

0.5 kg/ha | 3 kg

from km coast

SOILS

100% BARR_5A.1

6.6 ha Pallic

PASTURE

Pasture growth	18,939 kg DM/ha/yr	Removed	0 kg DM/ha/yr
Utilisation	85 %	Dairy	29.04 rsu/ha
Intake	16,098 kg DM/ha/yr		

CROP MANAGEMENT

Block type	Pasture
Topography	Flat
Pasture type	Ryegrass/white clover
Cultivated in last 5 y	rears No
Animals present	Yes

Hydrophobic condition	Use default
Susceptibility to pugging	Occasional
Is compacted	No
Naturally high water table	No

	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN
RSU/HA												
Dairy	0.13	1.63	2.7	3.42	3.55	3.92	3.68	2.63	2.75	2.4	2.23	-
FERTILISER APPLI	ED (KG/HA)											
N	-	-	40	30	24	22	22	11	18	22	-	-
Р	-	-	36	-	-	-	-	-	-	-	-	-
К	-	-	-	-	-	-	-	-	-	-	-	-
S	-	-	60	3	-	-	-	-	-	-	-	-
IRRIGATION APPLI	ED (MM)											
Avg applied (mm)	-	-	20	40	75	80	100	75	40	20	-	-
NORTH PIVOT (LIN	IEAR AND CENTRE	PIVOT): OVERSEEF	DEFAULT (FIXED)	N:2.5 P:0.1 K:1.6 S:2	2.5 CA:9.3 MG:2.2 N	IA:9.5						
Supplied (mm)	-	-	21	42	79	84	105	79	42	21	-	-
Applied (mm)	-	-	20	40	75	80	100	75	40	20	-	-
Depth (mm)	-	-	5	5	5	5	5	5	5	5	-	-
Return (days)	-	-	1	1	1	1	1	1	1	1	-	-

SOIL/IRRIGATION - RESULTS

					NITROGEN			PHOSPHORUS				
SOIL	IRRIGATOR	AREA	TOTAL LOST	LOST	DRAINAGE ¹	SURPLUS	ADDED ²	TOTAL LOST	LOST	SOIL P LOSS RISK	FERT P LOSS RISK	EFF P LOSS RISK
Barr_5a.1	North pivot	6.6 ha (100%)	206 kg	31 kg/ha	17.2 ppm	239 kg/ha	231 kg/ha	3 kg	0.5 kg/ha	Low	Low	Low

1 - N concentration due to leaching in drainage water at the bottom of the root zone.

2 - N added as fertiliser, effluent and organic only

SOIL/IRRIGATION - OTHER VALUES

							то е	50CM			TO 1	50CM	
SOIL	IRRIGATOR	AREA	DRAINAGE	RUNOFF	AET	FIELD CAPACITY	WILTING POINT	SATURATION	PAW	FIELD CAPACITY	WILTING POINT	SATURATION	PAW
Barr_5a.1	North pivot	6.6 ha (100%)	190 mm	0 mm	891 mm	162 mm	63 mm	279 mm	99 mm	-	-	-	-

MODEL NOTES

Overview

Maintenance nutrient requirements for this block take account of nutrients added in effluent.

Olsen P (38) is above that required for near maximum pasture production (30). See a consultant about reducing fertiliser P inputs. Note that on high producing dairy farms, target Olsen P levels are higher.

Soil P loss status is high. Consider reducing Olsen P levels.

Fertiliser P loss is greater than 10% of total P loss - this is outside the range of data available for New Zealand and P loss data should be used with caution. Potential P loss from fertiliser is high. Check fertiliser rates are not too high. If P is applied in high risk months consider alternative months of application or changing the form of P.

The change in inorganic soil pool indicates that fertiliser nutrients can be reduced for Ca

Estimated change in soil test values for samples taken to 7.5cm:

- Increase in Olsen P test of 1 units
- No change in QT K test
- Increase in QT Mg test of 2 units

N losses from the root zone from this block exceed 11.3 ppm. This could contribute to high drinking water levels. The drinking water standard is 11.3 ppm. Note that the drinking water standard is not a environmental water quality standard, which is usually lower than the drinking water standard or a regulatory standard.Consider mitigation options to reduce this loss

Soil is slowly acidifying and would be neutralised by a maintenance lime application of 210 kg/ha/yr pure lime. Review soil pH and lime requirement.

NUTRIENT BUDGET

LOSSES FROM ROOT ZONE

	TOTAL LOS	S (KG/YR)			LOSS PER HA (K	G/YR)			
Nitrogen	206				31				
Phosphorus	3				0.5				
NUTRIENTS ADDED (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA	
Effluent added	~	53	5	63	4	8	3	2	
Fertiliser, lime and other	~	178	36	0	63	80	0	0	
Irrigation		12	0	8	12	44	10	45	
Supplements fed on blocks	~	45	4	39	3	8	3	2	
Rain/clover fixation	~	119	0	2	4	2	4	16	
NUTRIENTS REMOVED (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA	
Leaching, runoff and direct losses	~	31	0.5	29	81	73	2	16	
As product		105	18	25	6	23	2	7	
Transfer	~	62	5	52	3	10	3	2	
Effluent exported		0	0	0	0	0	0	0	
To atmosphere	~	87	0	0	0	0	0	0	
As supplements and crop residues		0	0	0	0	0	0	0	
CHANGE IN POOLS (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA	
Organic pool		121	16	0	-4	0	0	0	
Inorganic mineral	~	0	1	-12	0	-1	-2	-2	
Inorganic soil pool		0	5	17	0	38	14	42	

Effluent block pivot (Temp_1a.1) Pasture - Flat, 13.4 ha

BLOCK DETAILS									
Area	Average temp	-	609 mm/yr	923 mm/yr	Latitude	-43.6444	Longitude	172.4433	

30 kg/ha | 400 kg

0.5 kg/ha | 7 kg

Distance	30
from	km
coast	KIII

SOILS

100% TEMP_1A.1

13.4 ha Pallic

PASTURE

Pasture growth	18,939 kg DM/ha/yr	Removed	0 kg DM/ha/yr
Utilisation	85 %	Dairy	29.04 rsu/ha
Intake	16,098 kg DM/ha/yr		

CROP MANAGEMENT

Block type	Pasture
Topography	Flat
Pasture type	Ryegrass/white clover
Cultivated in last 5 year	rs No
Animals present	Yes

Hydrophobic condition	Use default
Susceptibility to pugging	Occasional
ls compacted	No
Naturally high water table	No

	JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN
rsu/ha												
Dairy	0.13	1.63	2.7	3.42	3.55	3.92	3.68	2.63	2.75	2.4	2.23	-
FERTILISER APPLI	'ERTILISER APPLIED (KG/HA)											
N	-	-	40	30	24	22	22	11	18	22	-	-
Р	-	-	36	-	-	-	-	-	-	-	-	-
К	-	-	-	-	-	-	-	-	-	-	-	-
S	-	-	60	3	-	-	-	-	-	-	-	-
IRRIGATION APPLI	ED (MM)											
Avg applied (mm)	-	-	20	40	75	80	100	75	40	20	-	-
NORTH PIVOT (LIN	IEAR AND CENTRE	PIVOT): OVERSEER	DEFAULT (FIXED)	N:2.5 P:0.1 K:1.6 S:2	2.5 CA:9.3 MG:2.2 N	IA:9.5						
Supplied (mm)	-	-	21	42	79	84	105	79	42	21	-	-
Applied (mm)	-	-	20	40	75	80	100	75	40	20	-	-
Depth (mm)	-	-	5	5	5	5	5	5	5	5	-	-
Return (days)	-	-	1	1	1	1	1	1	1	1	-	-

				PHOSPHORUS								
SOIL	IRRIGATOR	AREA	TOTAL LOST	LOST	DRAINAGE ¹	SURPLUS	ADDED ²	TOTAL LOST	LOST	SOIL P LOSS RISK	FERT P LOSS RISK	EFF P LOSS RISK
Temp_1a.1	North pivot	13.4 ha (100%)	400 kg	30 kg/ha	16.4 ppm	238 kg/ha	231 kg/ha	7 kg	0.5 kg/ha	Low	Low	Low

1 - N concentration due to leaching in drainage water at the bottom of the root zone.

2 - N added as fertiliser, effluent and organic only

SOIL/IRRIGATION - OTHER VALUES

						то босм				TO 150CM			
SOIL	IRRIGATOR	AREA	DRAINAGE	DRAINAGE RUNOFF AET			WILTING POINT	SATURATION PAW		FIELD CAPACITY	WILTING POINT	SATURATION	PAW
Temp_1a.1	North pivot	13.4 ha (100%)	190 mm	0 mm	891 mm	195 mm	96 mm	261 mm	99 mm	-	-	_	-

MODEL NOTES

Overview

Maintenance nutrient requirements for this block take account of nutrients added in effluent.

Olsen P (38) is above that required for near maximum pasture production (30). See a consultant about reducing fertiliser P inputs. Note that on high producing dairy farms, target Olsen P levels are higher.

Soil P loss status is high. Consider reducing Olsen P levels.

Fertiliser P loss is greater than 10% of total P loss - this is outside the range of data available for New Zealand and P loss data should be used with caution. Potential P loss from fertiliser is high. Check fertiliser rates are not too high. If P is applied in high risk months consider alternative months of application or changing the form of P.

The change in inorganic soil pool indicates that fertiliser nutrients can be reduced for Ca

Estimated change in soil test values for samples taken to 7.5cm:

- Increase in Olsen P test of 1 units
- No change in QT K test
- Increase in QT Mg test of 2 units

N losses from the root zone from this block exceed 11.3 ppm. This could contribute to high drinking water levels. The drinking water standard is 11.3 ppm. Note that the drinking water standard is not a environmental water quality standard, which is usually lower than the drinking water standard or a regulatory standard.Consider mitigation options to reduce this loss

Soil is slowly acidifying and would be neutralised by a maintenance lime application of 210 kg/ha/yr pure lime. Review soil pH and lime requirement.

	TOTAL LOS	S (KG/YR)			LOSS PER HA (KG/YR)					
Nitrogen	400				30					
Phosphorus	7									
NUTRIENTS ADDED (KG/HA/YR)		Ν	Р	К	s	CA	MG	NA		
Effluent added	~	53	5	63	4	8	3	2		
Fertiliser, lime and other	~	178	36	0	63	80	0	0		
Irrigation		12	0	8	12	44	10	45		
Supplements fed on blocks	~	45	4	39	3	8	3	2		
Rain/clover fixation	~	118	0	2	4	2	4	16		
NUTRIENTS REMOVED (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Leaching, runoff and direct losses	~	30	0.5	29	81	72	2	16		
As product		105	18	25	6	23	2	7		
Transfer	~	62	5	52	3	10	3	2		
Effluent exported		0	0	0	0	0	0	0		
To atmosphere	~	88	0	0	0	0	0	0		
As supplements and crop residues		0	0	0	0	0	0	0		
CHANGE IN POOLS (KG/HA/YR)		Ν	Р	К	s	CA	MG	NA		
Organic pool		121	16	0	-4	0	0	0		
Inorganic mineral	~	0	1	-12	0	-1	-2	-2		
Inorganic soil pool		0	5	17	0	39	14	42		

Effluent block pivot (Temp_2a.1) Pasture - Flat, 2.6 ha

BLOCK DETAILS												
Area	2.6 ha	Average temp	12.1 ℃	Average rainfall	609 mm/yr	Annual PET	923 mm/yr	Latitude	-43.6444	Longitude	172.4433	
Distanco												

29 kg/ha | 75 kg

0.5 kg/ha | 1 kg

Distance	30
from	20
monn	km
coast	

SOILS

100% TEMP_2A.1

2.6 ha Pallic

PASTURE

Pasture growth	18,939 kg DM/ha/yr	Removed	0 kg DM/ha/yr
Utilisation	85 %	Dairy	29.04 rsu/ha
Intake	16,098 kg DM/ha/yr		

Block type	Pasture
Topography	Flat
Pasture type	Ryegrass/white clover
Cultivated in last 5 ye	ears No
Animals present	Yes

Hydrophobic condition	Use default
Susceptibility to pugging	Occasional
ls compacted	No
Naturally high water table	No

	JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN
RSU/HA												
Dairy	0.13	1.63	2.7	3.42	3.55	3.92	3.68	2.63	2.75	2.4	2.23	-
FERTILISER APPLI	ERTILISER APPLIED (KG/HA)											
N	-	-	40	30	24	22	22	11	18	22	-	-
Р	-	-	36	-	-	-	-	-	-	-	-	-
К	-	-	-	-	-	-	-	-	-	-	-	-
S	-	-	60	3	-	-	-	-	-	-	-	-
IRRIGATION APPL	IED (MM)											
Avg applied (mm)	-	-	20	40	75	80	100	75	40	20	-	-
NORTH PIVOT (LIM	NEAR AND CENTRE	PIVOT): OVERSEEP	R DEFAULT (FIXED)	N:2.5 P:0.1 K:1.6 S:2	2.5 CA:9.3 MG:2.2 N	IA:9.5						
Supplied (mm)	-	-	21	42	79	84	105	79	42	21	-	-
Applied (mm)	-	-	20	40	75	80	100	75	40	20	-	-
Depth (mm)	-	-	5	5	5	5	5	5	5	5	-	-
Return (days)	-	-	1	1	1	1	1	1	1	1	-	-

				PHOSPHORUS								
SOIL	IRRIGATOR	AREA	TOTAL LOST	LOST	DRAINAGE ¹	SURPLUS	ADDED ²	TOTAL LOST	LOST	SOIL P LOSS RISK	FERT P LOSS RISK	EFF P LOSS RISK
Temp_2a.1	North pivot	2.6 ha (100%)	75 kg	29 kg/ha	15.9 ppm	238 kg/ha	231 kg/ha	1 kg	0.5 kg/ha	Low	Low	Low

1 - N concentration due to leaching in drainage water at the bottom of the root zone.

2 - N added as fertiliser, effluent and organic only

SOIL/IRRIGATION - OTHER VALUES

							то босм				то 150СМ			
SOIL	IRRIGATOR	AREA	DRAINAGE	DRAINAGE RUNOFF AET			WILTING POINT	SATURATION PAW		FIELD CAPACITY	SATURATION		PAW	
Temp_2a.1	North pivot	2.6 ha (100%)	190 mm	0 mm	891 mm	198 mm	93 mm	261 mm	105 mm	-	-	-	-	

MODEL NOTES

Overview

Maintenance nutrient requirements for this block take account of nutrients added in effluent.

Olsen P (38) is above that required for near maximum pasture production (30). See a consultant about reducing fertiliser P inputs. Note that on high producing dairy farms, target Olsen P levels are higher.

Soil P loss status is high. Consider reducing Olsen P levels.

Fertiliser P loss is greater than 10% of total P loss - this is outside the range of data available for New Zealand and P loss data should be used with caution. Potential P loss from fertiliser is high. Check fertiliser rates are not too high. If P is applied in high risk months consider alternative months of application or changing the form of P.

The change in inorganic soil pool indicates that fertiliser nutrients can be reduced for Ca

Estimated change in soil test values for samples taken to 7.5cm:

- Increase in Olsen P test of 1 units
- No change in QT K test
- Increase in QT Mg test of 2 units

N losses from the root zone from this block exceed 11.3 ppm. This could contribute to high drinking water levels. The drinking water standard is 11.3 ppm. Note that the drinking water standard is not a environmental water quality standard, which is usually lower than the drinking water standard or a regulatory standard.Consider mitigation options to reduce this loss

Soil is slowly acidifying and would be neutralised by a maintenance lime application of 200 kg/ha/yr pure lime. Review soil pH and lime requirement.

	TOTAL LOS	S (KG/YR)			LOSS PER HA (KG/YR)					
Nitrogen	75				29					
Phosphorus	1				0.5					
NUTRIENTS ADDED (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Effluent added	~	53	5	63	4	8	3	2		
Fertiliser, lime and other	~	178	36	0	63	80	0	0		
Irrigation		12	0	8	12	44	10	45		
Supplements fed on blocks	~	45	4	39	3	8	3	2		
Rain/clover fixation	~	117	0	2	4	2	4	16		
NUTRIENTS REMOVED (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Leaching, runoff and direct losses	~	29	0.5	29	81	71	2	16		
As product		105	18	25	6	23	2	7		
Transfer	~	62	5	52	3	10	3	2		
Effluent exported		0	0	0	0	0	0	0		
To atmosphere	~	88	0	0	0	0	0	0		
As supplements and crop residues		0	0	0	0	0	0	0		
CHANGE IN POOLS (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Organic pool		121	16	0	-4	0	0	0		
Inorganic mineral	~	0	1	-12	0	-1	-2	-2		
Inorganic soil pool		0	5	17	0	39	14	42		

Effluent block pivot (Temp_4a.1) Pasture - Flat, 2.1 ha

BLOCK DETAILS											
Area	2.1 ha	Average temp	Average rainfall	609 mm/yr	Annual PET	923 mm/yr	Latitude	-43.6444	Longitude	172.4433	
D: I I I I I I I I I I I I I I I I I I I											

29 kg/ha | **61** kg

0.5 kg/ha | 1 kg

Distance	30
from	
coast	km

SOILS

100% TEMP_4A.1

2.1 ha Pallic

PASTURE

Pasture growth	18,939 kg DM/ha/yr	Removed	0 kg DM/ha/yr
Utilisation	85 %	Dairy	29.04 rsu/ha
Intake	16,098 kg DM/ha/yr		

Block type	Pasture
Topography	Flat
Pasture type	Ryegrass/white clover
Cultivated in last 5 ye	ears No
Animals present	Yes

Hydrophobic condition	Use default
Susceptibility to pugging	Occasional
ls compacted	No
Naturally high water table	No

			1			1						
	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN
RSU/HA												
Dairy	0.13	1.63	2.7	3.42	3.55	3.92	3.68	2.63	2.75	2.4	2.23	-
FERTILISER APPLI	FERTILISER APPLIED (KG/HA)											
N	-	-	40	30	24	22	22	11	18	22	-	-
Р	-	-	36	-	-	-	-	-	-	-	-	-
К	-	-	-	-	-	-	-	-	-	-	-	-
S	-	-	60	3	-	-	-	-	-	-	-	-
IRRIGATION APPL	IED (MM)											
Avg applied (mm)	-	-	20	40	75	80	100	75	40	20	-	-
NORTH PIVOT (LIN	VEAR AND CENTRE	PIVOT): OVERSEEP	R DEFAULT (FIXED)	N:2.5 P:0.1 K:1.6 S:	2.5 CA:9.3 MG:2.2 N	IA:9.5						
Supplied (mm)	-	-	21	42	79	84	105	79	42	21	-	-
Applied (mm)	-	-	20	40	75	80	100	75	40	20	-	-
Depth (mm)	-	-	5	5	5	5	5	5	5	5	-	-
Return (days)	-	-	1	1	1	1	1	1	1	1	-	-

	NITROGEN					PHOSPHORUS						
SOIL	IRRIGATOR	AREA	TOTAL LOST	LOST	DRAINAGE ¹	SURPLUS	ADDED ²	TOTAL LOST	LOST	SOIL P LOSS RISK	FERT P LOSS RISK	EFF P LOSS RISK
Temp_4a.1	North pivot	2.1 ha (100%)	61 kg	29 kg/ha	16 ppm	238 kg/ha	231 kg/ha	1 kg	0.5 kg/ha	Low	Low	Low

1 - N concentration due to leaching in drainage water at the bottom of the root zone.

2 - N added as fertiliser, effluent and organic only

SOIL/IRRIGATION - OTHER VALUES

						то 60СМ				ТО 150СМ			
SOIL	IRRIGATOR	AREA	DRAINAGE	RUNOFF	AET	FIELD CAPACITY	WILTING POINT	SATURATION	PAW	FIELD CAPACITY	WILTING POINT	SATURATION	PAW
Temp_4a.1	North pivot	2.1 ha (100%)	190 mm	0 mm	891 mm	192 mm	87 mm	258 mm	105 mm	-	-	-	-

MODEL NOTES

Overview

Maintenance nutrient requirements for this block take account of nutrients added in effluent.

Olsen P (38) is above that required for near maximum pasture production (30). See a consultant about reducing fertiliser P inputs. Note that on high producing dairy farms, target Olsen P levels are higher.

Soil P loss status is high. Consider reducing Olsen P levels.

Fertiliser P loss is greater than 10% of total P loss - this is outside the range of data available for New Zealand and P loss data should be used with caution. Potential P loss from fertiliser is high. Check fertiliser rates are not too high. If P is applied in high risk months consider alternative months of application or changing the form of P.

The change in inorganic soil pool indicates that fertiliser nutrients can be reduced for Ca

Estimated change in soil test values for samples taken to 7.5cm:

- Increase in Olsen P test of 1 units
- No change in QT K test
- Increase in QT Mg test of 2 units

N losses from the root zone from this block exceed 11.3 ppm. This could contribute to high drinking water levels. The drinking water standard is 11.3 ppm. Note that the drinking water standard is not a environmental water quality standard, which is usually lower than the drinking water standard or a regulatory standard.Consider mitigation options to reduce this loss

Soil is slowly acidifying and would be neutralised by a maintenance lime application of 200 kg/ha/yr pure lime. Review soil pH and lime requirement.

	TOTAL LOS	S (KG/YR)			LOSS PER HA (KG/YR)				
Nitrogen	61				29				
Phosphorus	1				0.5				
NUTRIENTS ADDED (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA	
Effluent added	~	53	5	63	4	8	3	2	
Fertiliser, lime and other	~	178	36	0	63	80	0	0	
Irrigation		12	0	8	12	44	10	45	
Supplements fed on blocks	~	45	4	39	3	8	3	2	
Rain/clover fixation	~	118	0	2	4	2	4	16	
NUTRIENTS REMOVED (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA	
Leaching, runoff and direct losses	~	29	0.5	29	81	71	2	16	
As product		105	18	25	6	23	2	7	
Transfer	~	62	5	52	3	10	3	2	
Effluent exported		0	0	0	0	0	0	0	
To atmosphere	~	88	0	0	0	0	0	0	
As supplements and crop residues		0	0	0	0	0	0	0	
CHANGE IN POOLS (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA	
Organic pool		121	16	0	-4	0	0	0	
Inorganic mineral	~	0	1	-12	0	-1	-2	-2	
Inorganic soil pool		0	5	17	0	39	14	42	

Effluent block pivot (Waka_3a.1) Pasture - Flat, 8.1 ha

BLOCK DETAILS											
Area	8.1 ha	Average temp	Average rainfall	609 mm/yr	Annual PET	923 mm/yr	Latitude	-43.6444	Longitude	172.4433	
Distances											

30 kg/ha | 242 kg

0.7 kg/ha | **6** kg

Distance	30
from	
coast	km

SOILS

100% WAKA_3A.1

8.1 ha Pallic

PASTURE

Pasture growth	18,939 kg DM/ha/yr	Removed	0 kg DM/ha/yr
Utilisation	85 %	Dairy	29.04 rsu/ha
Intake	16,098 kg DM/ha/yr		

Block type	Pasture
Topography	Flat
Pasture type	Ryegrass/white clover
Cultivated in last 5	years No
Animals present	Yes

Hydrophobic condition	Use default
Susceptibility to pugging	Occasional
Is compacted	No
Naturally high water table	No

	JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN
RSU/HA												
Dairy	0.13	1.63	2.7	3.42	3.55	3.92	3.68	2.63	2.75	2.4	2.23	-
FERTILISER APPLI	IED (KG/HA)											
N	-	-	40	30	24	22	22	11	18	22	-	-
Ρ	-	-	36	-	-	-	-	-	-	-	-	-
К	-	-	-	-	-	-	-	-	-	-	-	-
S	-	-	60	З	-	-	-	-	-	-	-	-
IRRIGATION APPL	IED (MM)											
Avg applied (mm)	-	-	20	40	75	80	100	75	40	20	-	_
NORTH PIVOT (LIN	VEAR AND CENTRE	PIVOT): OVERSEEF	DEFAULT (FIXED)	N:2.5 P:0.1 K:1.6 S:2	2.5 CA:9.3 MG:2.2 N	IA:9.5						
Supplied (mm)	-	-	21	42	79	84	105	79	42	21	-	-
Applied (mm)	-	-	20	40	75	80	100	75	40	20	-	-
Depth (mm)	-	-	5	5	5	5	5	5	5	5	-	-
Return (days)	-	-	1	1	1	1	1	1	1	1	-	-

			NITROGEN					PHOSPHORUS				
SOIL	IRRIGATOR	AREA	TOTAL LOST	LOST	DRAINAGE ¹	SURPLUS	ADDED ²	TOTAL LOST	LOST	SOIL P LOSS RISK	FERT P LOSS RISK	EFF P LOSS RISK
Waka_3a.1	North pivot	8.1 ha (100%)	242 kg	30 kg/ha	16.4 ppm	238 kg/ha	231 kg/ha	6 kg	0.7 kg/ha	Low	Low	Low

1 - N concentration due to leaching in drainage water at the bottom of the root zone.

2 - N added as fertiliser, effluent and organic only

SOIL/IRRIGATION - OTHER VALUES

						то 60СМ				TO 150CM			
SOIL	IRRIGATOR	AREA	DRAINAGE	RUNOFF	AET	FIELD CAPACITY	WILTING POINT	SATURATION	PAW	FIELD CAPACITY	WILTING POINT	SATURATION	PAW
Waka_3a.1	North pivot	8.1 ha (100%)	190 mm	0 mm	891 mm	195 mm	96 mm	261 mm	99 mm	-	-	-	-

MODEL NOTES

Overview

Maintenance nutrient requirements for this block take account of nutrients added in effluent.

Olsen P (38) is above that required for near maximum pasture production (30). See a consultant about reducing fertiliser P inputs. Note that on high producing dairy farms, target Olsen P levels are higher.

Soil P loss status is high. Consider reducing Olsen P levels.

Fertiliser P loss is greater than 10% of total P loss - this is outside the range of data available for New Zealand and P loss data should be used with caution. Potential P loss from fertiliser is high. Check fertiliser rates are not too high. If P is applied in high risk months consider alternative months of application or changing the form of P.

The change in inorganic soil pool indicates that fertiliser nutrients can be reduced for Ca

Estimated change in soil test values for samples taken to 7.5cm:

- Increase in Olsen P test of 1 units
- No change in QT K test
- Increase in QT Mg test of 2 units

N losses from the root zone from this block exceed 11.3 ppm. This could contribute to high drinking water levels. The drinking water standard is 11.3 ppm. Note that the drinking water standard is not a environmental water quality standard, which is usually lower than the drinking water standard or a regulatory standard.Consider mitigation options to reduce this loss

Soil is slowly acidifying and would be neutralised by a maintenance lime application of 210 kg/ha/yr pure lime. Review soil pH and lime requirement.

	TOTAL LOS	S (KG/YR)			LOSS PER HA (KG/YR)					
Nitrogen	242				30					
Phosphorus	6				0.7					
NUTRIENTS ADDED (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Effluent added	~	53	5	63	4	8	3	2		
Fertiliser, lime and other	~	178	36	0	63	80	0	0		
Irrigation		12	0	8	12	44	10	45		
Supplements fed on blocks	~	45	4	39	3	8	3	2		
Rain/clover fixation	~	117	0	2	4	2	4	16		
NUTRIENTS REMOVED (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Leaching, runoff and direct losses	~	30	0.7	29	81	72	2	16		
As product		105	18	25	6	23	2	7		
Transfer	~	62	5	52	3	10	3	2		
Effluent exported		0	0	0	0	0	0	0		
To atmosphere	~	87	0	0	0	0	0	0		
As supplements and crop residues		0	0	0	0	0	0	0		
CHANGE IN POOLS (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Organic pool		121	16	0	-4	0	0	0		
Inorganic mineral	~	0	1	-12	0	-1	-2	-2		
Inorganic soil pool		0	4	17	0	39	14	42		

K-line block (Flax_4a.1) Pasture - Flat, 9.9 ha

BLOCK DETAILS												
Area	9.9 ha	Average temp	12.1 °C	Average rainfall	609 mm/yr	Annual PET	923 mm/yr	Latitude	-43.6444	Longitude	172.4433	

23 kg/ha | 225 kg

0.5 kg/ha | 5 kg

Distance	30	
from	50 km	
coast	KITI	

SOILS

100% FLAX_4A.1

9.9 ha Gley

PASTURE

Pasture growth	18,939 kg DM/ha/yr	Removed	0 kg DM/ha/yr
Utilisation	85 %	Dairy	29.04 rsu/ha
Intake	16,098 kg DM/ha/yr		

Block type	Pasture
Topography	Flat
Pasture type	Ryegrass/white clover
Cultivated in last 5 y	ears No
Animals present	Yes

Hydrophobic condition	Use default
Susceptibility to pugging	Occasional
ls compacted	No
Naturally high water table	No

	JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN
RSU/HA												
Dairy	0.13	1.63	2.7	3.42	3.55	3.92	3.68	2.63	2.75	2.4	2.23	-
FERTILISER APPL	IED (KG/HA)											
N	-	-	40	30	24	22	22	11	18	22	-	-
Р	-	-	36	-	-	-	-	-	-	-	-	-
К	-	-	-	-	-	-	-	-	-	-	-	-
S	-	-	60	3	-	-	-	-	-	-	-	-
IRRIGATION APPL	IED (MM)											
Avg applied (mm)	-	-	-	70	70	105	105	70	35	-	-	-
K LINE (SPRAYLIN	ES): OVERSEER DE	FAULT (FIXED) N:2	5 P:0.1 K:1.6 S:2.5 0	A:9.3 MG:2.2 NA:9.	5							
Supplied (mm)	-	-	-	74	74	110	110	74	37	-	-	-
Applied (mm)	-	-	-	70	70	105	105	70	35	-	-	-
Depth (mm)	-	-	35	35	35	35	35	35	35	-	-	-
Return (days)	-	-	8	8	8	8	8	8	8	-	-	-

					NITROGEN			PHOSPHORUS				
SOIL	IRRIGATOR	AREA	TOTAL LOST	LOST	DRAINAGE ¹	SURPLUS	ADDED ²	TOTAL LOST	LOST	SOIL P LOSS RISK	FERT P LOSS RISK	EFF P LOSS RISK
Flax_4a.1	K LINE	9.9 ha (100%)	225 kg	23 kg/ha	12.2 ppm	208 kg/ha	178 kg/ha	5 kg	0.5 kg/ha	Low	Low	N/A

1 - N concentration due to leaching in drainage water at the bottom of the root zone.

2 - N added as fertiliser, effluent and organic only

SOIL/IRRIGATION - OTHER VALUES

						то 60СМ				то 150СМ			
SOIL	IRRIGATOR	AREA	DRAINAGE	RUNOFF	AET	FIELD CAPACITY	WILTING POINT	SATURATION	PAW	FIELD CAPACITY	WILTING POINT	SATURATION	PAW
Flax_4a.1	K LINE	9.9 ha (100%)	199 mm	0 mm	887 mm	249 mm	144 mm	300 mm	105 mm	-	-	-	-

MODEL NOTES

Overview

Olsen P (34) is above that required for near maximum pasture production (30). See a consultant about reducing fertiliser P inputs. Note that on high producing dairy farms, target Olsen P levels are higher.

Soil P loss status is high. Consider reducing Olsen P levels.

Fertiliser P loss is greater than 10% of total P loss - this is outside the range of data available for New Zealand and P loss data should be used with caution. Potential P loss from fertiliser is high. Check fertiliser rates are not too high. If P is applied in high risk months consider alternative months of application or changing the form of P.

The change in inorganic soil pool indicates that fertiliser nutrients can be reduced for Ca

Estimated change in soil test values for samples taken to 7.5cm:

- No change in Olsen P test
- No change in QT K test
- Increase in QT Mg test of 1 units

N losses from the root zone from this block exceed 11.3 ppm. This could contribute to high drinking water levels. The drinking water standard is 11.3 ppm. Note that the drinking water standard is not a environmental water quality standard, which is usually lower than the drinking water standard or a regulatory standard.Consider mitigation options to reduce this loss

Soil is slowly acidifying and would be neutralised by a maintenance lime application of 240 kg/ha/yr pure lime. Review soil pH and lime requirement.

	TOTAL LOS	S (KG/YR)			LOSS PER HA (KG/YR)					
Nitrogen	225				23					
Phosphorus	5				0.5					
NUTRIENTS ADDED (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Effluent added	~	0	0	0	0	0	0	0		
Fertiliser, lime and other	~	178	36	0	63	80	0	0		
Irrigation		12	0	8	12	44	11	45		
Supplements fed on blocks	~	45	4	39	3	8	3	2		
Rain/clover fixation	~	140	0	2	4	2	4	16		
NUTRIENTS REMOVED (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Leaching, runoff and direct losses	~	23	0.5	15	79	56	1	5		
As product		105	18	25	6	23	2	7		
Transfer	~	62	5	52	3	10	3	2		
Effluent exported		0	0	0	0	0	0	0		
To atmosphere	~	102	0	0	0	0	0	0		
As supplements and crop residues		0	0	0	0	0	0	0		
CHANGE IN POOLS (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Organic pool		83	12	0	-6	0	0	0		
Inorganic mineral	~	0	4	-35	0	-1	-2	-2		
Inorganic soil pool		0	1	-9	0	47	12	52		

Worth block Fixed grid (Temp_1a.1) Pasture - Flat, 2 ha

BLOCK DETAILS										
Area	2 ha	0	Average rainfall	609 mm/yr	923 mm/yr	Latitude	-43.6444	Longitude	172.4433	

31 kg/ha | **63** kg

0.4 kg/ha | 1 kg

Distance	30
from	
coast	km

SOILS

100% TEMP_1A.1

2 ha Pallic

PASTURE

Pasture growth	18,939 kg DM/ha/yr	Removed	0 kg DM/ha/yr
Utilisation	85 %	Dairy	29.04 rsu/ha
Intake	16,098 kg DM/ha/yr		

Block type	Pasture
Topography	Flat
Pasture type	Ryegrass/white clover
Cultivated in last 5 yea	ars No
Animals present	Yes

Hydrophobic condition	Use default
Susceptibility to pugging	Occasional
ls compacted	No
Naturally high water table	No

	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN
RSU/HA	-											
Dairy	0.13	1.63	2.7	3.42	3.55	3.92	3.68	2.63	2.75	2.4	2.23	-
FERTILISER APPLI	IED (KG/HA)											
N	-	-	40	30	24	22	22	11	18	22	-	-
Р	-	-	36	-	-	-	-	-	-	-	-	-
К	-	-	-	-	-	-	-	-	-	-	-	-
S	-	-	60	3	-	-	-	-	-	-	-	-
IRRIGATION APPL	.IED (MM)											
Avg applied (mm)	-	-	24	48	60	60	60	60	60	30	-	-
FIXED GRID (SOLI	D SET): OVERSEER	DEFAULT (FIXED)	N:2.5 P:0.1 K:1.6 S:2	.5 CA:9.3 MG:2.2 NA	4:9.5							
Supplied (mm)	-	-	25	50	63	63	63	63	63	32	-	-
Applied (mm)	-	-	24	48	60	60	60	60	60	30	-	-
Depth (mm)	-	-	6	6	6	6	6	6	6	6	-	-
Return (days)	-	-	3	3	3	3	3	3	3	3	-	-

					NITROGEN			PHOSPHORUS				
SOIL	IRRIGATOR	AREA	TOTAL LOST	LOST	DRAINAGE ¹	SURPLUS	ADDED ²	TOTAL LOST	LOST	SOIL P LOSS RISK	FERT P LOSS RISK	EFF P LOSS RISK
Temp_1a.1	Fixed grid	2 ha (100%)	63 kg	31 kg/ha	16.2 ppm	205 kg/ha	178 kg/ha	1 kg	0.4 kg/ha	Low	Low	N/A

1 - N concentration due to leaching in drainage water at the bottom of the root zone.

2 - N added as fertiliser, effluent and organic only

SOIL/IRRIGATION - OTHER VALUES

						то 60СМ				TO 150CM			
SOIL	IRRIGATOR	AREA	DRAINAGE	RUNOFF	AET	FIELD CAPACITY	WILTING POINT	SATURATION	PAW	FIELD CAPACITY	WILTING POINT	SATURATION	PAW
Temp_1a.1	Fixed grid	2 ha (100%)	206 mm	0 mm	825 mm	195 mm	96 mm	261 mm	99 mm	-	-	-	-

MODEL NOTES

Overview

Use maintenance K analysis with caution as maintenance K levels were less than 10 kg K/ha.

Olsen P (34) is above that required for near maximum pasture production (30). See a consultant about reducing fertiliser P inputs. Note that on high producing dairy farms, target Olsen P levels are higher.

Soil P loss status is high. Consider reducing Olsen P levels.

Fertiliser P loss is greater than 10% of total P loss - this is outside the range of data available for New Zealand and P loss data should be used with caution. Potential P loss from fertiliser is high. Check fertiliser rates are not too high. If P is applied in high risk months consider alternative months of application or changing the form of P.

The change in inorganic soil pool indicates that fertiliser nutrients can be reduced for Ca

Estimated change in soil test values for samples taken to 7.5cm:

- No change in Olsen P test
- No change in QT K test
- Increase in QT Mg test of 1 units

N losses from the root zone from this block exceed 11.3 ppm. This could contribute to high drinking water levels. The drinking water standard is 11.3 ppm. Note that the drinking water standard is not a environmental water quality standard, which is usually lower than the drinking water standard or a regulatory standard.Consider mitigation options to reduce this loss

Soil is slowly acidifying and would be neutralised by a maintenance lime application of 270 kg/ha/yr pure lime. Review soil pH and lime requirement.

	TOTAL LOS	S (KG/YR)			LOSS PER HA (KG/YR)					
Nitrogen	63				31					
Phosphorus	1				0.4					
NUTRIENTS ADDED (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Effluent added	~	0	0	0	0	0	0	0		
Fertiliser, lime and other	~	178	36	0	63	80	0	0		
Irrigation		11	0	7	11	39	9	40		
Supplements fed on blocks	~	45	4	39	3	8	3	2		
Rain/clover fixation	~	138	0	2	4	2	4	16		
NUTRIENTS REMOVED (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Leaching, runoff and direct losses	~	31	0.4	15	78	63	1	5		
As product		105	18	25	6	23	2	7		
Transfer	~	62	5	52	3	10	3	2		
Effluent exported		0	0	0	0	0	0	0		
To atmosphere	~	87	0	0	0	0	0	0		
As supplements and crop residues		0	0	0	0	0	0	0		
CHANGE IN POOLS (KG/HA/YR)		Ν	Р	к	S	CA	MG	NA		
Organic pool		86	15	0	-6	0	0	0		
Inorganic mineral	~	0	1	-43	0	-1	-2	-2		
Inorganic soil pool		0	1	-2	0	35	10	46		

Worth block Fixed grid (Temp_2a.1) Pasture - Flat, 2.4 ha

BLOCK DETAILS									
Area	Average temp	0		923 mm/yr	Latitude	-43.6444	Longitude	172.4433	
Distant									

31 kg/ha | **74** kg

0.4 kg/ha | 1 kg

Distance	30
from	50
	km
coast	

SOILS

100% TEMP_2A.1

2.4 ha Pallic

PASTURE

Pasture growth	18,939 kg DM/ha/yr	Removed	0 kg DM/ha/yr
Utilisation	85 %	Dairy	29.04 rsu/ha
Intake	16,098 kg DM/ha/yr		

Block type	Pasture
Topography	Flat
Pasture type	Ryegrass/white clover
Cultivated in last 5 yea	ars No
Animals present	Yes

Use default
Occasional
No
No

	JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN
RSU/HA												
Dairy	0.13	1.63	2.7	3.42	3.55	3.92	3.68	2.63	2.75	2.4	2.23	-
FERTILISER APPLI	IED (KG/HA)											
N	-	-	40	30	24	22	22	11	18	22	-	-
Р	-	-	36	-	-	-	-	-	-	-	-	-
К	-	-	-	-	-	-	-	-	-	-	-	-
S	-	-	60	3	-	-	-	-	-	-	-	-
IRRIGATION APPL	IED (MM)											
Avg applied (mm)	-	-	24	48	60	60	60	60	60	36	-	-
FIXED GRID (SOLI	D SET): OVERSEER	DEFAULT (FIXED)	N:2.5 P:0.1 K:1.6 S:2	.5 CA:9.3 MG:2.2 NA	:9.5							
Supplied (mm)	-	-	25	50	63	63	63	63	63	38	-	-
Applied (mm)	-	-	24	48	60	60	60	60	60	36	-	-
Depth (mm)	-	-	6	6	6	6	6	6	6	6	-	-
Return (days)	-	-	3	3	3	3	3	3	3	3	-	-

	NITROGEN					PHOSPHORUS						
SOIL	IRRIGATOR	AREA	TOTAL LOST	LOST	DRAINAGE ¹	SURPLUS	ADDED 2	TOTAL LOST	LOST	SOIL P LOSS RISK	FERT P LOSS RISK	EFF P LOSS RISK
Temp_2a.1	Fixed grid	2.4 ha (100%)	74 kg	31 kg/ha	15.7 ppm	204 kg/ha	178 kg/ha	1 kg	0.4 kg/ha	Low	Low	N/A

1 - N concentration due to leaching in drainage water at the bottom of the root zone.

2 - N added as fertiliser, effluent and organic only

SOIL/IRRIGATION - OTHER VALUES

					то босм				то 150СМ				
SOIL	IRRIGATOR	AREA	DRAINAGE	RUNOFF	AET	FIELD CAPACITY	WILTING POINT	SATURATION	PAW	FIELD CAPACITY	WILTING POINT	SATURATION	PAW
Temp_2a.1	Fixed grid	2.4 ha (100%)	208 mm	0 mm	829 mm	198 mm	93 mm	261 mm	105 mm	-	-	-	-

MODEL NOTES

Overview

Use maintenance K analysis with caution as maintenance K levels were less than 10 kg K/ha.

Olsen P (34) is above that required for near maximum pasture production (30). See a consultant about reducing fertiliser P inputs. Note that on high producing dairy farms, target Olsen P levels are higher.

Soil P loss status is high. Consider reducing Olsen P levels.

Fertiliser P loss is greater than 10% of total P loss - this is outside the range of data available for New Zealand and P loss data should be used with caution. Potential P loss from fertiliser is high. Check fertiliser rates are not too high. If P is applied in high risk months consider alternative months of application or changing the form of P.

The change in inorganic soil pool indicates that fertiliser nutrients can be reduced for Ca

Estimated change in soil test values for samples taken to 7.5cm:

- No change in Olsen P test
- No change in QT K test
- Increase in QT Mg test of 1 units

N losses from the root zone from this block exceed 11.3 ppm. This could contribute to high drinking water levels. The drinking water standard is 11.3 ppm. Note that the drinking water standard is not a environmental water quality standard, which is usually lower than the drinking water standard or a regulatory standard.Consider mitigation options to reduce this loss

Soil is slowly acidifying and would be neutralised by a maintenance lime application of 270 kg/ha/yr pure lime. Review soil pH and lime requirement.

	TOTAL LOS	TOTAL LOSS (KG/YR)				LOSS PER HA (KG/YR)					
Nitrogen	74	74				31					
Phosphorus	1				0.4						
NUTRIENTS ADDED (KG/HA/YR)		N	Р	К	S	CA	МG	NA			
Effluent added	~	0	0	0	0	0	0	0			
Fertiliser, lime and other	~	178	36	0	63	80	0	0			
Irrigation		11	0	7	11	40	9	41			
Supplements fed on blocks	~	45	4	39	3	8	3	2			
Rain/clover fixation	~	137	0	2	4	2	4	16			
NUTRIENTS REMOVED (KG/HA/YR)		N	Р	К	S	CA	MG	NA			
Leaching, runoff and direct losses	~	31	0.4	15	78	62	1	5			
As product		105	18	25	6	23	2	7			
Transfer	~	62	5	52	3	10	3	2			
Effluent exported		0	0	0	0	0	0	0			
To atmosphere	~	87	0	0	0	0	0	0			
As supplements and crop residues		0	0	0	0	0	0	0			
CHANGE IN POOLS (KG/HA/YR)		N	Р	К	S	CA	МG	NA			
Organic pool		86	15	0	-6	0	0	0			
Inorganic mineral	~	0	1	-43	0	-1	-2	-2			
Inorganic soil pool		0	1	-2	0	36	11	47			

North block Fixed grid (Temp_4a.1) Pasture - Flat, 2.7 ha BLOCK DETAILS

0.4 kg/ha | 1 kg

coast km

SOILS

100% TEMP_4A.1

2.7 ha Pallic

PASTURE

Pasture growth	18,939 kg DM/ha/yr	Removed	0 kg DM/ha/yr
Utilisation	85 %	Dairy	29.04 rsu/ha
Intake	16,098 kg DM/ha/yr		

Block type	Pasture
Topography	Flat
Pasture type	Ryegrass/white clover
Cultivated in last 5 ye	ars No
Animals present	Yes

Hydrophobic condition	Use default		
Susceptibility to pugging	Occasional		
ls compacted	No		
Naturally high water table	No		

	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN		
RSU/HA														
Dairy	0.13	1.63	2.7	3.42	3.55	3.92	3.68	2.63	2.75	2.4	2.23	-		
FERTILISER APPLI	ERTILISER APPLIED (KG/HA)													
N														
Р	-	-	36	-	-	-	-	-	-	-	-	-		
К	-	-	-	-	-	-	-	-	-	-	-	-		
S	-	-	60	3	-	-	-	-	-	-	-	-		
IRRIGATION APPL	IED (MM)													
Avg applied (mm)	-	-	24	48	60	60	60	60	60	36	-	-		
FIXED GRID (SOLI	D SET): OVERSEER	DEFAULT (FIXED)	N:2.5 P:0.1 K:1.6 S:2.	5 CA:9.3 MG:2.2 NA	4:9.5									
Supplied (mm)	-	-	25	50	63	63	63	63	63	38	-	-		
Applied (mm)	-	-	24	48	60	60	60	60	60	36	-	-		
Depth (mm)	-	-	6	6	6	6	6	6	6	6	-	-		
Return (days)	-	-	3	3	3	3	3	3	3	3	-	-		

	-			PHOSPHORUS								
SOIL	IRRIGATOR	AREA	TOTAL LOST	LOST	DRAINAGE ¹	SURPLUS	ADDED ²	TOTAL LOST	LOST	SOIL P LOSS RISK	FERT P LOSS RISK	EFF P LOSS RISK
Temp_4a.1	Fixed grid	2.7 ha (100%)	83 kg	31 kg/ha	15.7 ppm	205 kg/ha	178 kg/ha	1 kg	0.4 kg/ha	Low	Low	N/A

1 - N concentration due to leaching in drainage water at the bottom of the root zone.

2 - N added as fertiliser, effluent and organic only

SOIL/IRRIGATION - OTHER VALUES

							то 6	50CM		то 150СМ			
SOIL	IRRIGATOR	AREA	DRAINAGE	RUNOFF	AET	FIELD CAPACITY	WILTING POINT	SATURATION	PAW	FIELD CAPACITY	WILTING POINT	SATURATION	PAW
Temp_4a.1	Fixed grid	2.7 ha (100%)	208 mm	0 mm	829 mm	192 mm	87 mm	258 mm	105 mm	-	-	-	-

MODEL NOTES

Overview

Use maintenance K analysis with caution as maintenance K levels were less than 10 kg K/ha.

Olsen P (34) is above that required for near maximum pasture production (30). See a consultant about reducing fertiliser P inputs. Note that on high producing dairy farms, target Olsen P levels are higher.

Soil P loss status is high. Consider reducing Olsen P levels.

Fertiliser P loss is greater than 10% of total P loss - this is outside the range of data available for New Zealand and P loss data should be used with caution. Potential P loss from fertiliser is high. Check fertiliser rates are not too high. If P is applied in high risk months consider alternative months of application or changing the form of P.

The change in inorganic soil pool indicates that fertiliser nutrients can be reduced for Ca

Estimated change in soil test values for samples taken to 7.5cm:

- No change in Olsen P test
- No change in QT K test
- Increase in QT Mg test of 1 units

N losses from the root zone from this block exceed 11.3 ppm. This could contribute to high drinking water levels. The drinking water standard is 11.3 ppm. Note that the drinking water standard is not a environmental water quality standard, which is usually lower than the drinking water standard or a regulatory standard.Consider mitigation options to reduce this loss

Soil is slowly acidifying and would be neutralised by a maintenance lime application of 270 kg/ha/yr pure lime. Review soil pH and lime requirement.

	TOTAL LOS	S (KG/YR)			LOSS PER HA (K	G/YR)				
Nitrogen	83				31					
Phosphorus	1				0.4					
NUTRIENTS ADDED (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Effluent added	~	0	0	0	0	0	0	0		
Fertiliser, lime and other	~	178	36	0	63	80	0	0		
Irrigation		11	0	7	11	40	9	41		
Supplements fed on blocks	~	45	4	39	3	8	3	2		
Rain/clover fixation	~	138	0	2	4	2	4	16		
NUTRIENTS REMOVED (KG/HA/YR)		Ν	Р	к	S	CA	MG	NA		
Leaching, runoff and direct losses	~	31	0.4	15	78	62	1	5		
As product		105	18	25	6	23	2	7		
Transfer	~	62	5	52	3	10	3	2		
Effluent exported		0	0	0	0	0	0	0		
To atmosphere	~	88	0	0	0	0	0	0		
As supplements and crop residues		0	0	0	0	0	0	0		
CHANGE IN POOLS (KG/HA/YR)		Ν	Р	к	S	CA	MG	NA		
Organic pool		86	15	0	-6	0	0	0		
Inorganic mineral	~	0	1	-43	0	-1	-2	-2		
Inorganic soil pool		0	1	-2	0	36	11	47		

Worth block Fixed grid (Waka_1a.1) Pasture - Flat, 1 ha 32 kg/ha | 32 kg 0.5 kg/ha | 1 kg **BLOCK DETAILS** 12.1 609 923 1 Average Average Annual Latitude -43.6444 Longitude 172.4433 Area °C ha temp rainfall mm/yr PET mm/yr

Distance	30	
from	50 km	
coast	KIII	

SOILS

100% WAKA_1A.1

1 ha Pallic

PASTURE

Pasture growth	18,939 kg DM/ha/yr	Removed	0 kg DM/ha/yr
Utilisation	85 %	Dairy	29.04 rsu/ha
Intake	16,098 kg DM/ha/yr		

Block type	Pasture
Topography	Flat
Pasture type	Ryegrass/white clover
Cultivated in last 5 y	ears No
Animals present	Yes

Use default
Occasional
No
No

	JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN		
RSU/HA														
Dairy	0.13	1.63	2.7	3.42	3.55	3.92	3.68	2.63	2.75	2.4	2.23	-		
FERTILISER APPLI	FERTILISER APPLIED (KG/HA)													
Ν														
Ρ	-	-	36	-	-	-	-	-	-	-	-	-		
К	-	-	-	-	-	-	-	-	-	-	-	-		
S	-	-	60	З	-	-	-	-	-	-	-	-		
IRRIGATION APPL	IED (MM)													
Avg applied (mm)	-	-	24	48	60	60	60	60	60	30	-	-		
FIXED GRID (SOLI	D SET): OVERSEER	DEFAULT (FIXED)	N:2.5 P:0.1 K:1.6 S:2	.5 CA:9.3 MG:2.2 NA	:9.5									
Supplied (mm)	-	-	25	50	63	63	63	63	63	32	-	-		
Applied (mm)	-	-	24	48	60	60	60	60	60	30	-	-		
Depth (mm)	-	-	6	6	6	6	6	6	6	6	-	-		
Return (days)	-	-	3	3	3	3	3	3	3	3	-	-		

		_		PHOSPHORUS								
SOIL	IRRIGATOR	AREA	TOTAL LOST	LOST	DRAINAGE ¹	SURPLUS	ADDED ²	TOTAL LOST	LOST	SOIL P LOSS RISK	FERT P LOSS RISK	EFF P LOSS RISK
Waka_1a.1	Fixed grid	1 ha (100%)	32 kg	32 kg/ha	16.2 ppm	205 kg/ha	178 kg/ha	1 kg	0.5 kg/ha	Low	Low	N/A

1 - N concentration due to leaching in drainage water at the bottom of the root zone.

2 - N added as fertiliser, effluent and organic only

SOIL/IRRIGATION - OTHER VALUES

							то е	50CM		то 150СМ			
SOIL	IRRIGATOR	AREA	DRAINAGE	RUNOFF	AET	FIELD CAPACITY	WILTING POINT	SATURATION	PAW	FIELD CAPACITY	WILTING POINT	SATURATION	PAW
Waka_1a.1	Fixed grid	1 ha (100%)	207 mm	0 mm	823 mm	207 mm	111 mm	264 mm	96 mm	-	-	-	-

MODEL NOTES

Overview

Use maintenance K analysis with caution as maintenance K levels were less than 10 kg K/ha.

Olsen P (34) is above that required for near maximum pasture production (30). See a consultant about reducing fertiliser P inputs. Note that on high producing dairy farms, target Olsen P levels are higher.

Soil P loss status is high. Consider reducing Olsen P levels.

Fertiliser P loss is greater than 10% of total P loss - this is outside the range of data available for New Zealand and P loss data should be used with caution. Potential P loss from fertiliser is high. Check fertiliser rates are not too high. If P is applied in high risk months consider alternative months of application or changing the form of P.

The change in inorganic soil pool indicates that fertiliser nutrients can be reduced for Ca

Estimated change in soil test values for samples taken to 7.5cm:

- No change in Olsen P test
- No change in QT K test
- Increase in QT Mg test of 1 units

N losses from the root zone from this block exceed 11.3 ppm. This could contribute to high drinking water levels. The drinking water standard is 11.3 ppm. Note that the drinking water standard is not a environmental water quality standard, which is usually lower than the drinking water standard or a regulatory standard.Consider mitigation options to reduce this loss

Soil is slowly acidifying and would be neutralised by a maintenance lime application of 270 kg/ha/yr pure lime. Review soil pH and lime requirement.

	TOTAL LOS	S (KG/YR)			LOSS PER HA (K	ū/YR)				
Nitrogen	32				32					
Phosphorus	1				0.5					
NUTRIENTS ADDED (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Effluent added	~	0	0	0	0	0	0	0		
Fertiliser, lime and other	~	178	36	0	63	80	0	0		
Irrigation		11	0	7	11	39	9	40		
Supplements fed on blocks	~	45	4	39	3	8	З	2		
Rain/clover fixation	~	138	0	2	4	2	4	16		
NUTRIENTS REMOVED (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Leaching, runoff and direct losses	~	32	0.5	15	78	63	1	5		
As product		105	18	25	6	23	2	7		
Transfer	~	62	5	52	3	10	3	2		
Effluent exported		0	0	0	0	0	0	0		
To atmosphere	~	89	0	0	0	0	0	0		
As supplements and crop residues		0	0	0	0	0	0	0		
CHANGE IN POOLS (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Organic pool		85	15	0	-6	0	0	0		
Inorganic mineral	~	0	1	-43	0	-1	-2	-2		
Inorganic soil pool		0	1	-2	0	35	10	46		

Worth block Fixed grid (Waka_3a.1) Pasture - Flat, 0.3 ha

BLOCK DETAILS										
Area	Average temp	0	609 mm/yr	Annual PET	923 mm/yr	Latitude	-43.6444	Longitude	172.4433	

31 kg/ha | **9** kg

0.5 kg/ha | 0 kg

Distance	30
from	km
coast	KITI

SOILS

100% WAKA_3A.1

0.3 ha Pallic

PASTURE

Pasture growth	18,939 kg DM/ha/yr	Removed	0 kg DM/ha/yr
Utilisation	85 %	Dairy	29.04 rsu/ha
Intake	16,098 kg DM/ha/yr		

Block type	Pasture
Topography	Flat
Pasture type	Ryegrass/white clover
Cultivated in last 5 yea	ars No
Animals present	Yes

Hydrophobic condition	Use default		
Susceptibility to pugging	Occasional		
ls compacted	No		
Naturally high water table	No		

	JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN
RSU/HA												
Dairy	0.13	1.63	2.7	3.42	3.55	3.92	3.68	2.63	2.75	2.4	2.23	-
rertiliser applied (KG/HA)												
N	-	-	40	30	24	22	22	11	18	22	-	-
Р	-	-	36	-	-	-	-	-	-	-	-	-
К	-	-	-	-	-	-	-	-	-	-	-	-
S	-	-	60	3	-	-	-	-	-	-	-	-
IRRIGATION APPL	IED (MM)											
Avg applied (mm)	-	-	24	48	60	60	60	60	60	30	-	-
FIXED GRID (SOLI	D SET): OVERSEER	DEFAULT (FIXED)	N:2.5 P:0.1 K:1.6 S:2.	.5 CA:9.3 MG:2.2 NA	:9.5							
Supplied (mm)	-	-	25	50	63	63	63	63	63	32	-	-
Applied (mm)	-	-	24	48	60	60	60	60	60	30	-	-
Depth (mm)	-	-	6	6	6	6	6	6	6	6	-	-
Return (days)	-	-	3	3	3	3	3	3	3	3	-	-

	NITROGEN					PHOSPHORUS						
SOIL	IRRIGATOR	AREA	TOTAL LOST	LOST	DRAINAGE ¹	SURPLUS	ADDED ²	TOTAL LOST	LOST	SOIL P LOSS RISK	FERT P LOSS RISK	EFF P LOSS RISK
Waka_3a.1	Fixed grid	0.3 ha (100%)	9 kg	31 kg/ha	16.2 ppm	204 kg/ha	178 kg/ha	0 kg	0.5 kg/ha	Low	Low	N/A

1 - N concentration due to leaching in drainage water at the bottom of the root zone.

2 - N added as fertiliser, effluent and organic only

SOIL/IRRIGATION - OTHER VALUES

						то 60СМ				ТО 150СМ			
SOIL	IRRIGATOR	AREA	DRAINAGE	RUNOFF	AET	FIELD CAPACITY	WILTING POINT	SATURATION	PAW	FIELD CAPACITY	WILTING POINT	SATURATION	PAW
Waka_3a.1	Fixed grid	0.3 ha (100%)	206 mm	0 mm	825 mm	195 mm	96 mm	261 mm	99 mm	-	-	_	-

MODEL NOTES

Overview

Use maintenance K analysis with caution as maintenance K levels were less than 10 kg K/ha.

Olsen P (34) is above that required for near maximum pasture production (30). See a consultant about reducing fertiliser P inputs. Note that on high producing dairy farms, target Olsen P levels are higher.

Soil P loss status is high. Consider reducing Olsen P levels.

Fertiliser P loss is greater than 10% of total P loss - this is outside the range of data available for New Zealand and P loss data should be used with caution. Potential P loss from fertiliser is high. Check fertiliser rates are not too high. If P is applied in high risk months consider alternative months of application or changing the form of P.

The change in inorganic soil pool indicates that fertiliser nutrients can be reduced for Ca

Estimated change in soil test values for samples taken to 7.5cm:

- No change in Olsen P test
- No change in QT K test
- Increase in QT Mg test of 1 units

N losses from the root zone from this block exceed 11.3 ppm. This could contribute to high drinking water levels. The drinking water standard is 11.3 ppm. Note that the drinking water standard is not a environmental water quality standard, which is usually lower than the drinking water standard or a regulatory standard.Consider mitigation options to reduce this loss

Soil is slowly acidifying and would be neutralised by a maintenance lime application of 270 kg/ha/yr pure lime. Review soil pH and lime requirement.

	TOTAL LOSS	S (KG/YR)			LOSS PER HA (KG/YR)				
Nitrogen	9				31				
Phosphorus	0				0.5				
NUTRIENTS ADDED (KG/HA/YR)		Ν	Р	К	s	CA	МG	NA	
Effluent added	~	0	0	0	0	0	0	0	
Fertiliser, lime and other	~	178	36	0	63	80	0	0	
Irrigation		11	0	7	11	39	9	40	
Supplements fed on blocks	~	45	4	39	3	8	3	2	
Rain/clover fixation	~	137	0	2	4	2	4	16	
NUTRIENTS REMOVED (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA	
Leaching, runoff and direct losses	~	31	0.6	15	78	63	1	5	
As product		105	18	25	6	23	2	7	
Transfer	~	62	5	52	3	10	3	2	
Effluent exported		0	0	0	0	0	0	0	
To atmosphere	~	87	0	0	0	0	0	0	
As supplements and crop residues		0	0	0	0	0	0	0	
CHANGE IN POOLS (KG/HA/YR)		Ν	Р	к	S	CA	МG	NA	
Organic pool		86	15	0	-6	0	0	0	
Inorganic mineral	~	0	1	-43	0	-1	-2	-2	
Inorganic soil pool		0	1	-2	0	35	10	46	

Worth pivot - non eff (Barr_5a.1) Pasture - Flat, 3.4 ha

BLOCK DETAILS											
Area	3.4 ha	0	Average rainfall	609 mm/yr	Annual PET	923 mm/yr	Latitude	-43.6444	Longitude	172.4433	
D: .											

29 kg/ha | **99** kg

0.4 kg/ha | 1 kg

Distance	30
from	
coast	km

SOILS

100% BARR_5A.1

3.4 ha Pallic

PASTURE

Pasture growth	18,939 kg DM/ha/yr	Removed	0 kg DM/ha/yr
Utilisation	85 %	Dairy	29.04 rsu/ha
Intake	16,098 kg DM/ha/yr		

Block type	Pasture
Topography	Flat
Pasture type	Ryegrass/white clover
Cultivated in last 5	years No
Animals present	Yes

Hydrophobic condition	Use default
Susceptibility to pugging	Occasional
ls compacted	No
Naturally high water table	No

	JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN		
RSU/HA	ISU/HA													
Dairy	0.13	1.63	2.7	3.42	3.55	3.92	3.68	2.63	2.75	2.4	2.23	-		
FERTILISER APPLI	FERTILISER APPLIED (KG/HA)													
N	-	-	40	30	24	22	22	11	18	22	-	-		
Р	-	-	36	-	-	-	-	-	-	-	-	-		
К	-	-	-	-	-	-	-	-	-	-	-	-		
S	-	-	60	3	-	-	-	-	-	-	-	-		
IRRIGATION APPL	IED (MM)													
Avg applied (mm)	-	-	20	40	75	80	100	75	40	20	-	-		
NORTH PIVOT (LIN	NEAR AND CENTRE	PIVOT): OVERSEEF	DEFAULT (FIXED)	N:2.5 P:0.1 K:1.6 S:2	2.5 CA:9.3 MG:2.2 N	IA:9.5								
Supplied (mm)	-	-	21	42	79	84	105	79	42	21	-	-		
Applied (mm)	-	-	20	40	75	80	100	75	40	20	-	-		
Depth (mm)	-	-	5	5	5	5	5	5	5	5	-	-		
Return (days)	-	-	1	1	1	1	1	1	1	1	-	-		

					NITROGEN			PHOSPHORUS				
SOIL	IRRIGATOR	AREA	TOTAL LOST	LOST	DRAINAGE ¹	SURPLUS	ADDED ²	TOTAL LOST	LOST	SOIL P LOSS RISK	FERT P LOSS RISK	EFF P LOSS RISK
Barr_5a.1	North pivot	3.4 ha (100%)	99 kg	29 kg/ha	16.1 ppm	204 kg/ha	178 kg/ha	1 kg	0.4 kg/ha	Low	Low	N/A

1 - N concentration due to leaching in drainage water at the bottom of the root zone.

2 - N added as fertiliser, effluent and organic only

SOIL/IRRIGATION - OTHER VALUES

						то 60СМ				то 150СМ			
SOIL	IRRIGATOR	AREA	DRAINAGE	RUNOFF	AET	FIELD CAPACITY	WILTING POINT	SATURATION	PAW	FIELD CAPACITY	WILTING POINT	SATURATION	PAW
Barr_5a.1	North pivot	3.4 ha (100%)	190 mm	0 mm	891 mm	162 mm	63 mm	279 mm	99 mm	-	-	-	-

MODEL NOTES

Overview

Use maintenance K analysis with caution as maintenance K levels were less than 10 kg K/ha.

Olsen P (34) is above that required for near maximum pasture production (30). See a consultant about reducing fertiliser P inputs. Note that on high producing dairy farms, target Olsen P levels are higher.

Soil P loss status is high. Consider reducing Olsen P levels.

Fertiliser P loss is greater than 10% of total P loss - this is outside the range of data available for New Zealand and P loss data should be used with caution. Potential P loss from fertiliser is high. Check fertiliser rates are not too high. If P is applied in high risk months consider alternative months of application or changing the form of P.

The change in inorganic soil pool indicates that fertiliser nutrients can be reduced for Ca

Estimated change in soil test values for samples taken to 7.5cm:

- No change in Olsen P test
- No change in QT K test
- Increase in QT Mg test of 1 units

N losses from the root zone from this block exceed 11.3 ppm. This could contribute to high drinking water levels. The drinking water standard is 11.3 ppm. Note that the drinking water standard is not a environmental water quality standard, which is usually lower than the drinking water standard or a regulatory standard.Consider mitigation options to reduce this loss

Soil is slowly acidifying and would be neutralised by a maintenance lime application of 260 kg/ha/yr pure lime. Review soil pH and lime requirement.

	TOTAL LOS	S (KG/YR)			LOSS PER HA (KG/YR)					
Nitrogen	99				29					
Phosphorus	1				0.4					
NUTRIENTS ADDED (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Effluent added	~	0	0	0	0	0	0	0		
Fertiliser, lime and other	~	178	36	0	63	80	0	0		
Irrigation		12	0	8	12	44	10	45		
Supplements fed on blocks	~	45	4	39	3	8	З	2		
Rain/clover fixation	~	136	0	2	4	2	4	16		
NUTRIENTS REMOVED (KG/HA/YR)		Ν	Р	к	S	CA	MG	NA		
Leaching, runoff and direct losses	~	29	0.4	15	79	61	1	4		
As product		105	18	25	6	23	2	7		
Transfer	~	62	5	52	3	10	3	2		
Effluent exported		0	0	0	0	0	0	0		
To atmosphere	~	87	0	0	0	0	0	0		
As supplements and crop residues		0	0	0	0	0	0	0		
CHANGE IN POOLS (KG/HA/YR)		Ν	Р	к	S	CA	MG	NA		
Organic pool		89	15	0	-6	0	0	0		
Inorganic mineral	~	0	1	-43	0	-1	-2	-2		
Inorganic soil pool		0	1	-1	0	42	12	52		

Worth pivot - non eff (Temp_1a.1) Pasture - Flat, 7.3 ha

BLOCK DETAILS											
Area	7.3 ha	Average temp	-	609 mm/yr	Annual PET	923 mm/yr	Latitude	-43.6444	Longitude	172.4433	
Distance											

28 kg/ha | 202 kg

0.5 kg/ha | 3 kg

Distance	30
from	50
	km
coast	

SOILS

100% TEMP_1A.1

7.3 ha Pallic

PASTURE

Pasture growth	18,939 kg DM/ha/yr	Removed	0 kg DM/ha/yr
Utilisation	85 %	Dairy	29.04 rsu/ha
Intake	16,098 kg DM/ha/yr		

Block type	Pasture
Topography	Flat
Pasture type	Ryegrass/white clover
Cultivated in last 5 ye	ears No
Animals present	Yes

Hydrophobic condition	Use default
Susceptibility to pugging	Occasional
Is compacted	No
Naturally high water table	No

	JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN		
RSU/HA	ISU/HA													
Dairy	0.13	1.63	2.7	3.42	3.55	3.92	3.68	2.63	2.75	2.4	2.23	-		
ERTILISER APPLIED (KG/HA)														
N	-	-	40	30	24	22	22	11	18	22	-	-		
Р	-	-	36	-	-	-	-	-	-	-	-	-		
К	-	-	-	-	-	-	-	-	-	-	-	-		
S	-	-	60	3	-	-	-	-	-	-	-	-		
IRRIGATION APPL	IED (MM)													
Avg applied (mm)	-	-	20	40	75	80	100	75	40	20	-	-		
NORTH PIVOT (LIN	NEAR AND CENTRE	PIVOT): OVERSEEF	DEFAULT (FIXED)	N:2.5 P:0.1 K:1.6 S:2	2.5 CA:9.3 MG:2.2 N	IA:9.5								
Supplied (mm)	-	-	21	42	79	84	105	79	42	21	-	-		
Applied (mm)	-	-	20	40	75	80	100	75	40	20	-	-		
Depth (mm)	-	-	5	5	5	5	5	5	5	5	-	-		
Return (days)	-	-	1	1	1	1	1	1	1	1	-	-		

			NITROGEN				PHOSPHORUS					
SOIL	IRRIGATOR	AREA	TOTAL LOST	LOST	DRAINAGE ¹	SURPLUS	ADDED ²	TOTAL LOST	LOST	SOIL P LOSS RISK	FERT P LOSS RISK	EFF P LOSS RISK
Temp_1a.1	North pivot	7.3 ha (100%)	202 kg	28 kg/ha	15.3 ppm	203 kg/ha	178 kg/ha	3 kg	0.5 kg/ha	Low	Low	N/A

1 - N concentration due to leaching in drainage water at the bottom of the root zone.

2 - N added as fertiliser, effluent and organic only

SOIL/IRRIGATION - OTHER VALUES

							то е	50CM			TO 1	50CM	
SOIL	IRRIGATOR	AREA	DRAINAGE	RUNOFF	AET	FIELD CAPACITY	WILTING POINT	SATURATION	PAW	FIELD CAPACITY	WILTING POINT	SATURATION	PAW
Temp_1a.1	North pivot	7.3 ha (100%)	190 mm	0 mm	891 mm	195 mm	96 mm	261 mm	99 mm	-	-	-	-

MODEL NOTES

Overview

Use maintenance K analysis with caution as maintenance K levels were less than 10 kg K/ha.

Olsen P (34) is above that required for near maximum pasture production (30). See a consultant about reducing fertiliser P inputs. Note that on high producing dairy farms, target Olsen P levels are higher.

Soil P loss status is high. Consider reducing Olsen P levels.

Fertiliser P loss is greater than 10% of total P loss - this is outside the range of data available for New Zealand and P loss data should be used with caution. Potential P loss from fertiliser is high. Check fertiliser rates are not too high. If P is applied in high risk months consider alternative months of application or changing the form of P.

The change in inorganic soil pool indicates that fertiliser nutrients can be reduced for Ca

Estimated change in soil test values for samples taken to 7.5cm:

- No change in Olsen P test
- No change in QT K test
- Increase in QT Mg test of 1 units

N losses from the root zone from this block exceed 11.3 ppm. This could contribute to high drinking water levels. The drinking water standard is 11.3 ppm. Note that the drinking water standard is not a environmental water quality standard, which is usually lower than the drinking water standard or a regulatory standard.Consider mitigation options to reduce this loss

Soil is slowly acidifying and would be neutralised by a maintenance lime application of 260 kg/ha/yr pure lime. Review soil pH and lime requirement.

	TOTAL LOS	S (KG/YR)			LOSS PER HA (KG/YR) 28					
Nitrogen	202									
Phosphorus	3				0.5					
NUTRIENTS ADDED (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Effluent added	~	0	0	0	0	0	0	0		
Fertiliser, lime and other	~	178	36	0	63	80	0	0		
Irrigation		12	0	8	12	44	10	45		
Supplements fed on blocks	~	45	4	39	3	8	3	2		
Rain/clover fixation	~	135	0	2	4	2	4	16		
NUTRIENTS REMOVED (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Leaching, runoff and direct losses	~	28	0.5	15	79	59	1	4		
As product		105	18	25	6	23	2	7		
Transfer	~	62	5	52	3	10	3	2		
Effluent exported		0	0	0	0	0	0	0		
To atmosphere	~	87	0	0	0	0	0	0		
As supplements and crop residues		0	0	0	0	0	0	0		
CHANGE IN POOLS (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Organic pool		88	15	0	-6	0	0	0		
Inorganic mineral	~	0	1	-43	0	-1	-2	-2		
Inorganic soil pool		0	1	-1	0	43	12	52		

North pivot - non eff (Temp_2a.1) Pasture - Flat, 4.6 ha

BLOCK DETAILS											
Area	4.6 ha	Average temp	Average rainfall	609 mm/yr	Annual PET	923 mm/yr	Latitude	-43.6444	Longitude	172.4433	
Distance											

27 kg/ha | 123 kg

0.4 kg/ha | 2 kg

Distance	30
from	50
	km
coast	

SOILS

100% TEMP_2A.1

4.6 ha Pallic

PASTURE

Pasture growth	18,939 kg DM/ha/yr	Removed	0 kg DM/ha/yr
Utilisation	85 %	Dairy	29.04 rsu/ha
Intake	16,098 kg DM/ha/yr		

Block type	Pasture
Topography	Flat
Pasture type	Ryegrass/white clover
Cultivated in last 5	years No
Animals present	Yes

Hydrophobic condition	Use default
Susceptibility to pugging	Occasional
ls compacted	No
Naturally high water table	No

	JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	
RSU/HA													
Dairy	0.13	1.63	2.7	3.42	3.55	3.92	3.68	2.63	2.75	2.4	2.23	-	
FERTILISER APPLIED (KG/HA)													
N	-	-	40	30	24	22	22	11	18	22	-	-	
Р	-	-	36	-	-	-	-	-	-	-	-	-	
К	-	-	-	-	-	-	-	-	-	-	-	-	
S	-	-	60	3	-	-	-	-	-	-	-	-	
IRRIGATION APPL	IED (MM)												
Avg applied (mm)	-	-	20	40	75	80	100	75	40	20	-	-	
NORTH PIVOT (LIN	NEAR AND CENTRE	PIVOT): OVERSEEF	DEFAULT (FIXED)	N:2.5 P:0.1 K:1.6 S:2	2.5 CA:9.3 MG:2.2 N	IA:9.5							
Supplied (mm)	-	-	21	42	79	84	105	79	42	21	-	-	
Applied (mm)	-	-	20	40	75	80	100	75	40	20	-	-	
Depth (mm)	-	-	5	5	5	5	5	5	5	5	-	-	
Return (days)	-	-	1	1	1	1	1	1	1	1	-	-	

				PHOSPHORUS								
SOIL	IRRIGATOR	AREA	TOTAL LOST	LOST	DRAINAGE ¹	SURPLUS	ADDED ²	TOTAL LOST	LOST	SOIL P LOSS RISK	FERT P LOSS RISK	EFF P LOSS RISK
Temp_2a.1	North pivot	4.6 ha (100%)	123 kg	27 kg/ha	14.8 ppm	203 kg/ha	178 kg/ha	2 kg	0.4 kg/ha	Low	Low	N/A

1 - N concentration due to leaching in drainage water at the bottom of the root zone.

2 - N added as fertiliser, effluent and organic only

SOIL/IRRIGATION - OTHER VALUES

						то 60СМ				ТО 150СМ			
SOIL	IRRIGATOR	AREA	DRAINAGE	RUNOFF	AET	FIELD CAPACITY	WILTING POINT	SATURATION	PAW	FIELD CAPACITY	WILTING POINT	SATURATION	PAW
Temp_2a.1	North pivot	4.6 ha (100%)	190 mm	0 mm	891 mm	198 mm	93 mm	261 mm	105 mm	-	-	-	-

MODEL NOTES

Overview

Use maintenance K analysis with caution as maintenance K levels were less than 10 kg K/ha.

Olsen P (34) is above that required for near maximum pasture production (30). See a consultant about reducing fertiliser P inputs. Note that on high producing dairy farms, target Olsen P levels are higher.

Soil P loss status is high. Consider reducing Olsen P levels.

Fertiliser P loss is greater than 10% of total P loss - this is outside the range of data available for New Zealand and P loss data should be used with caution. Potential P loss from fertiliser is high. Check fertiliser rates are not too high. If P is applied in high risk months consider alternative months of application or changing the form of P.

The change in inorganic soil pool indicates that fertiliser nutrients can be reduced for Ca

Estimated change in soil test values for samples taken to 7.5cm:

- No change in Olsen P test
- No change in QT K test
- Increase in QT Mg test of 1 units

N losses from the root zone from this block exceed 11.3 ppm. This could contribute to high drinking water levels. The drinking water standard is 11.3 ppm. Note that the drinking water standard is not a environmental water quality standard, which is usually lower than the drinking water standard or a regulatory standard.Consider mitigation options to reduce this loss

Soil is slowly acidifying and would be neutralised by a maintenance lime application of 250 kg/ha/yr pure lime. Review soil pH and lime requirement.

	TOTAL LOS	S (KG/YR)			LOSS PER HA (KG/YR)					
Nitrogen	123				27					
Phosphorus	2				0.4					
NUTRIENTS ADDED (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Effluent added	~	0	0	0	0	0	0	0		
Fertiliser, lime and other	~	178	36	0	63	80	0	0		
Irrigation		12	0	8	12	44	10	45		
Supplements fed on blocks	~	45	4	39	3	8	3	2		
Rain/clover fixation	~	135	0	2	4	2	4	16		
NUTRIENTS REMOVED (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Leaching, runoff and direct losses	~	27	0.4	15	79	59	1	4		
As product		105	18	25	6	23	2	7		
Transfer	~	62	5	52	3	10	3	2		
Effluent exported		0	0	0	0	0	0	0		
To atmosphere	~	87	0	0	0	0	0	0		
As supplements and crop residues		0	0	0	0	0	0	0		
CHANGE IN POOLS (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Organic pool		89	15	0	-6	0	0	0		
Inorganic mineral	~	0	1	-43	0	-1	-2	-2		
Inorganic soil pool		0	1	-1	0	44	12	52		

Worth pivot - non eff (Temp_4a.1) Pasture - Flat, 4.4 ha

BLOCK DETAILS												
Area	4.4 ha	Average temp	12.1 ℃	Average rainfall	609 mm/yr	Annual PET	923 mm/yr	Latitude	-43.6444	Longitude	172.4433	
Distance												

27 kg/ha | 118 kg

0.4 kg/ha | 2 kg

Distance	30
from	50
	km
coast	

SOILS

100% TEMP_4A.1

4.4 ha Pallic

PASTURE

Pasture growth	18,939 kg DM/ha/yr	Removed	0 kg DM/ha/yr
Utilisation	85 %	Dairy	29.04 rsu/ha
Intake	16,098 kg DM/ha/yr		

Block type	Pasture
Topography	Flat
Pasture type	Ryegrass/white clover
Cultivated in last 5 y	vears No
Animals present	Yes

Hydrophobic condition	Use default
Susceptibility to pugging	Occasional
ls compacted	No
Naturally high water table	No

	JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	
RSU/HA													
Dairy	0.13	1.63	2.7	3.42	3.55	3.92	3.68	2.63	2.75	2.4	2.23	-	
FERTILISER APPLI	FERTILISER APPLIED (KG/HA)												
N	-	-	40	30	24	22	22	11	18	22	-	-	
Р	-	-	36	-	-	-	-	-	-	-	-	-	
К	-	-	-	-	-	-	-	-	-	-	-	-	
S	-	-	60	3	-	-	-	-	-	-	-	-	
IRRIGATION APPL	IED (MM)												
Avg applied (mm)	-	-	20	40	75	80	100	75	40	20	-	-	
NORTH PIVOT (LI	NEAR AND CENTRE	PIVOT): OVERSEEF	DEFAULT (FIXED)	N:2.5 P:0.1 K:1.6 S:2	2.5 CA:9.3 MG:2.2 N	IA:9.5							
Supplied (mm)	-	-	21	42	79	84	105	79	42	21	-	-	
Applied (mm)	-	-	20	40	75	80	100	75	40	20	-	-	
Depth (mm)	-	-	5	5	5	5	5	5	5	5	-	-	
Return (days)	-	-	1	1	1	1	1	1	1	1	-	-	

		_		PHOSPHORUS								
SOIL	IRRIGATOR	AREA	TOTAL LOST	LOST	DRAINAGE ¹	SURPLUS	ADDED ²	TOTAL LOST	LOST	SOIL P LOSS RISK	FERT P LOSS RISK	EFF P LOSS RISK
Temp_4a.1	North pivot	4.4 ha (100%)	118 kg	27 kg/ha	14.9 ppm	203 kg/ha	178 kg/ha	2 kg	0.4 kg/ha	Low	Low	N/A

1 - N concentration due to leaching in drainage water at the bottom of the root zone.

2 - N added as fertiliser, effluent and organic only

SOIL/IRRIGATION - OTHER VALUES

							то 6	юсм		то 150СМ			
SOIL	IRRIGATOR	AREA	DRAINAGE	RUNOFF	AET	FIELD CAPACITY	WILTING POINT	SATURATION	PAW	FIELD CAPACITY	WILTING POINT	SATURATION	PAW
Temp_4a.1	North pivot	4.4 ha (100%)	190 mm	0 mm	891 mm	192 mm	87 mm	258 mm	105 mm	-	-	-	-

MODEL NOTES

Overview

Use maintenance K analysis with caution as maintenance K levels were less than 10 kg K/ha.

Olsen P (34) is above that required for near maximum pasture production (30). See a consultant about reducing fertiliser P inputs. Note that on high producing dairy farms, target Olsen P levels are higher.

Soil P loss status is high. Consider reducing Olsen P levels.

Fertiliser P loss is greater than 10% of total P loss - this is outside the range of data available for New Zealand and P loss data should be used with caution. Potential P loss from fertiliser is high. Check fertiliser rates are not too high. If P is applied in high risk months consider alternative months of application or changing the form of P.

The change in inorganic soil pool indicates that fertiliser nutrients can be reduced for Ca

Estimated change in soil test values for samples taken to 7.5cm:

- No change in Olsen P test
- No change in QT K test
- Increase in QT Mg test of 1 units

N losses from the root zone from this block exceed 11.3 ppm. This could contribute to high drinking water levels. The drinking water standard is 11.3 ppm. Note that the drinking water standard is not a environmental water quality standard, which is usually lower than the drinking water standard or a regulatory standard.Consider mitigation options to reduce this loss

Soil is slowly acidifying and would be neutralised by a maintenance lime application of 250 kg/ha/yr pure lime. Review soil pH and lime requirement.

	TOTAL LOS	S (KG/YR)			LOSS PER HA (KG/YR)					
Nitrogen	118				27					
Phosphorus	2									
NUTRIENTS ADDED (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Effluent added	~	0	0	0	0	0	0	0		
Fertiliser, lime and other	~	178	36	0	63	80	0	0		
Irrigation		12	0	8	12	44	10	45		
Supplements fed on blocks	~	45	4	39	3	8	3	2		
Rain/clover fixation	~	135	0	2	4	2	4	16		
NUTRIENTS REMOVED (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Leaching, runoff and direct losses	~	27	0.4	15	79	59	1	4		
As product		105	18	25	6	23	2	7		
Transfer	~	62	5	52	3	10	3	2		
Effluent exported		0	0	0	0	0	0	0		
To atmosphere	~	88	0	0	0	0	0	0		
As supplements and crop residues		0	0	0	0	0	0	0		
CHANGE IN POOLS (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Organic pool		88	15	0	-6	0	0	0		
Inorganic mineral	~	0	1	-43	0	-1	-2	-2		
Inorganic soil pool		0	1	-1	0	43	12	52		

Worth pivot - non eff (Waka_3a.1) Pasture - Flat, 1.3 ha

BLOCK DETAILS											
Area	1.3 ha	Average temp	Average rainfall	609 mm/yr	Annual PET	923 mm/yr	Latitude	-43.6444	Longitude	172.4433	
Distance											

28 kg/ha | 36 kg

0.6 kg/ha | 1 kg

Distance	30
from	50
	km
coast	

SOILS

100% WAKA_3A.1

1.3 ha Pallic

PASTURE

Pasture growth	18,939 kg DM/ha/yr	Removed	0 kg DM/ha/yr
Utilisation	85 %	Dairy	29.04 rsu/ha
Intake	16,098 kg DM/ha/yr		

Block type	Pasture
Topography	Flat
Pasture type	Ryegrass/white clover
Cultivated in last 5	years No
Animals present	Yes

Hydrophobic condition	Use default
Susceptibility to pugging	Occasional
ls compacted	No
Naturally high water table	No

	JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN
RSU/HA												
Dairy	0.13	1.63	2.7	3.42	3.55	3.92	3.68	2.63	2.75	2.4	2.23	-
FERTILISER APPLI	IED (KG/HA)											
N	-	-	40	30	24	22	22	11	18	22	-	-
Ρ	-	-	36	-	-	-	-	-	-	-	-	-
К	-	-	-	-	-	-	-	-	-	-	-	-
S	-	-	60	3	-	-	-	-	-	-	-	-
IRRIGATION APPL	IED (MM)											
Avg applied (mm)	-	-	20	40	75	80	100	75	40	20	-	-
NORTH PIVOT (LIN	NEAR AND CENTRE	PIVOT): OVERSEEF	DEFAULT (FIXED)	N:2.5 P:0.1 K:1.6 S:2	2.5 CA:9.3 MG:2.2 N	IA:9.5						
Supplied (mm)	-	-	21	42	79	84	105	79	42	21	-	-
Applied (mm)	-	-	20	40	75	80	100	75	40	20	-	-
Depth (mm)	-	-	5	5	5	5	5	5	5	5	-	-
Return (days)	-	-	1	1	1	1	1	1	1	1	-	-

	NITROGEN					PHOSPHORUS						
SOIL	IRRIGATOR	AREA	TOTAL LOST	LOST	DRAINAGE ¹	SURPLUS	ADDED ²	TOTAL LOST	LOST	SOIL P LOSS RISK	FERT P LOSS RISK	EFF P LOSS RISK
Waka_3a.1	North pivot	1.3 ha (100%)	36 kg	28 kg/ha	15.3 ppm	203 kg/ha	178 kg/ha	1 kg	0.6 kg/ha	Low	Low	N/A

1 - N concentration due to leaching in drainage water at the bottom of the root zone.

2 - N added as fertiliser, effluent and organic only

SOIL/IRRIGATION - OTHER VALUES

						то 60СМ				ТО 150СМ			
SOIL	IRRIGATOR	AREA	DRAINAGE	RUNOFF	AET	FIELD CAPACITY	WILTING POINT	SATURATION	PAW	FIELD CAPACITY	WILTING POINT	SATURATION	PAW
Waka_3a.1	North pivot	1.3 ha (100%)	190 mm	0 mm	891 mm	195 mm	96 mm	261 mm	99 mm	-	-	-	-

MODEL NOTES

Overview

Use maintenance K analysis with caution as maintenance K levels were less than 10 kg K/ha.

Olsen P (34) is above that required for near maximum pasture production (30). See a consultant about reducing fertiliser P inputs. Note that on high producing dairy farms, target Olsen P levels are higher.

Soil P loss status is high. Consider reducing Olsen P levels.

Fertiliser P loss is greater than 10% of total P loss - this is outside the range of data available for New Zealand and P loss data should be used with caution. Potential P loss from fertiliser is high. Check fertiliser rates are not too high. If P is applied in high risk months consider alternative months of application or changing the form of P.

The change in inorganic soil pool indicates that fertiliser nutrients can be reduced for Ca

Estimated change in soil test values for samples taken to 7.5cm:

- No change in Olsen P test
- No change in QT K test
- Increase in QT Mg test of 1 units

N losses from the root zone from this block exceed 11.3 ppm. This could contribute to high drinking water levels. The drinking water standard is 11.3 ppm. Note that the drinking water standard is not a environmental water quality standard, which is usually lower than the drinking water standard or a regulatory standard.Consider mitigation options to reduce this loss

Soil is slowly acidifying and would be neutralised by a maintenance lime application of 260 kg/ha/yr pure lime. Review soil pH and lime requirement.

	TOTAL LOS	S (KG/YR)			LOSS PER HA (KG/YR)					
Nitrogen	36				28					
Phosphorus	1				0.6					
NUTRIENTS ADDED (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Effluent added	~	0	0	0	0	0	0	0		
Fertiliser, lime and other	~	178	36	0	63	80	0	0		
Irrigation		12	0	8	12	44	10	45		
Supplements fed on blocks	~	45	4	39	3	8	З	2		
Rain/clover fixation	~	135	0	2	4	2	4	16		
NUTRIENTS REMOVED (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Leaching, runoff and direct losses	~	28	0.6	15	79	59	1	4		
As product		105	18	25	6	23	2	7		
Transfer	~	62	5	52	3	10	3	2		
Effluent exported		0	0	0	0	0	0	0		
To atmosphere	~	87	0	0	0	0	0	0		
As supplements and crop residues		0	0	0	0	0	0	0		
CHANGE IN POOLS (KG/HA/YR)		Ν	Р	к	S	CA	MG	NA		
Organic pool		88	15	0	-6	0	0	0		
Inorganic mineral	~	0	1	-43	0	-1	-2	-2		
Inorganic soil pool		0	1	-1	0	43	12	52		

North Pivot 2 - Eff (Temp_1a.1) Pasture - Flat, 1.2 ha

BLOCK DETAILS												
Area	1.2 ha	Average temp	12.1 ℃	Average rainfall	609 mm/yr	Annual PET	923 mm/yr	Latitude	-43.644372	Longitude	172.443329	
D: 1												

29 kg/ha | **35** kg

0.5 kg/ha | 1 kg

Distance	30
from	
coast	km

SOILS

100% TEMP_1A.1

1.2 ha Pallic

PASTURE

Pasture growth	18,939 kg DM/ha/yr	Removed	0 kg DM/ha/yr
Utilisation	85 %	Dairy	29.04 rsu/ha
Intake	16,098 kg DM/ha/yr		

Block type	Pasture
Topography	Flat
Pasture type	Ryegrass/white clover
Cultivated in last 5	years No
Animals present	Yes

Hydrophobic condition	Use default
Susceptibility to pugging	Rare
ls compacted	No
Naturally high water table	No

	JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	
RSU/HA													
Dairy	0.13	1.63	2.7	3.42	3.55	3.92	3.68	2.63	2.75	2.4	2.23	-	
FERTILISER APPLI	ERTILISER APPLIED (KG/HA)												
N	-	-	40	30	24	22	22	11	18	22	-	-	
Р	-	-	36	-	-	-	-	-	-	-	-	-	
К	-	-	-	-	-	-	-	-	-	-	-	-	
S	-	-	60	3	-	-	-	-	-	-	-	-	
IRRIGATION APPL	IED (MM)												
Avg applied (mm)	-	-	15	40	75	80	100	75	35	25	-	-	
PIVOT 2 + 3 (LINE/	AR AND CENTRE PI	/OT): OVERSEER D	EFAULT (FIXED) N:	2.5 P:0.1 K:1.6 S:2.5	CA:9.3 MG:2.2 NA:	9.5							
Supplied (mm)	-	-	16	42	79	84	105	79	37	26	-	-	
Applied (mm)	-	-	15	40	75	80	100	75	35	25	-	-	
Depth (mm)	-	-	5	5	5	5	5	5	5	5	-	-	
Return (days)	-	-	1	1	1	1	1	1	1	1	-	-	

			NITROGEN					PHOSPHORUS				
SOIL	IRRIGATOR	AREA	TOTAL LOST	LOST	DRAINAGE ¹	SURPLUS	ADDED ²	TOTAL LOST	LOST	SOIL P LOSS RISK	FERT P LOSS RISK	EFF P LOSS RISK
Temp_1a.1	Pivot 2 + 3	1.2 ha (100%)	35 kg	29 kg/ha	16.6 ppm	238 kg/ha	231 kg/ha	1 kg	0.5 kg/ha	Low	Low	Low

1 - N concentration due to leaching in drainage water at the bottom of the root zone.

2 - N added as fertiliser, effluent and organic only

SOIL/IRRIGATION - OTHER VALUES

							то е	50CM			TO 1	50CM	
SOIL	IRRIGATOR	AREA	DRAINAGE	RUNOFF	AET	FIELD CAPACITY	WILTING POINT	SATURATION	PAW	FIELD CAPACITY	WILTING POINT	SATURATION	PAW
Temp_1a.1	Pivot 2 + 3	1.2 ha (100%)	185 mm	0 mm	891 mm	195 mm	96 mm	261 mm	99 mm	-	-	_	-

MODEL NOTES

Overview

Maintenance nutrient requirements for this block take account of nutrients added in effluent.

Olsen P (38) is above that required for near maximum pasture production (30). See a consultant about reducing fertiliser P inputs. Note that on high producing dairy farms, target Olsen P levels are higher.

Soil P loss status is high. Consider reducing Olsen P levels.

Fertiliser P loss is greater than 10% of total P loss - this is outside the range of data available for New Zealand and P loss data should be used with caution. Potential P loss from fertiliser is high. Check fertiliser rates are not too high. If P is applied in high risk months consider alternative months of application or changing the form of P.

The change in inorganic soil pool indicates that fertiliser nutrients can be reduced for Ca

Estimated change in soil test values for samples taken to 7.5cm:

- Increase in Olsen P test of 1 units
- No change in QT K test
- Increase in QT Mg test of 2 units

N losses from the root zone from this block exceed 11.3 ppm. This could contribute to high drinking water levels. The drinking water standard is 11.3 ppm. Note that the drinking water standard is not a environmental water quality standard, which is usually lower than the drinking water standard or a regulatory standard.Consider mitigation options to reduce this loss

Soil is slowly acidifying and would be neutralised by a maintenance lime application of 210 kg/ha/yr pure lime. Review soil pH and lime requirement.

	TOTAL LOS	S (KG/YR)			LOSS PER HA (KG/YR)						
Nitrogen	35				29						
Phosphorus	1				0.5						
NUTRIENTS ADDED (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA			
Effluent added	~	53	5	63	4	8	З	2			
Fertiliser, lime and other	~	178	36	0	63	80	0	0			
Irrigation		12	0	7	12	43	10	44			
Supplements fed on blocks	~	45	4	39	3	8	3	2			
Rain/clover fixation	~	117	0	2	4	2	4	16			
NUTRIENTS REMOVED (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA			
Leaching, runoff and direct losses	~	29	0.5	29	81	72	2	15			
As product		105	18	25	6	23	2	7			
Transfer	~	62	5	52	3	10	3	2			
Effluent exported		0	0	0	0	0	0	0			
To atmosphere	~	87	0	0	0	0	0	0			
As supplements and crop residues		0	0	0	0	0	0	0			
CHANGE IN POOLS (KG/HA/YR)		Ν	Р	К	5	CA	MG	NA			
Organic pool		122	16	0	-4	0	0	0			
Inorganic mineral	~	0	1	-12	0	-1	-2	-2			
Inorganic soil pool		0	5	17	0	39	14	42			

Worth Pivot 2 - Eff (Waka_1a.1) Pasture - Flat, 5.9 ha

PLOCK DETAILS

BLUCK DETAIL												
Aro	5.9	Average	12.1	Average	609	Annual	923	Latitudo	12 6/1/272	Longitudo	172.443329	
Area	ha	temp	°C	rainfall	mm/yr	PET	mm/yr	Latitude	-45.044572	Longitude	172.445529	
Distance												

29 kg/ha | **173** kg

0.7 kg/ha | 4 kg

Distance	30
from	50
	km
coast	

SOILS

100% WAKA_1A.1

5.9 ha Pallic

PASTURE

Pasture growth	18,939 kg DM/ha/yr	Removed	0 kg DM/ha/yr
Utilisation	85 %	Dairy	29.04 rsu/ha
Intake	16,098 kg DM/ha/yr		

Block type	Pasture
Topography	Flat
Pasture type	Ryegrass/white clover
Cultivated in last 5 yea	ars No
Animals present	Yes

Hydrophobic condition	Use default
Susceptibility to pugging	Rare
ls compacted	No
Naturally high water table	No

						1							
	JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	
RSU/HA													
Dairy	0.13	1.63	2.7	3.42	3.55	3.92	3.68	2.63	2.75	2.4	2.23	-	
FERTILISER APPLI	ERTILISER APPLIED (KG/HA)												
N	-	-	40	30	24	22	22	11	18	22	-	-	
Р	-	-	36	-	-	-	-	-	-	-	-	-	
К	-	-	-	-	-	-	-	-	-	-	-	-	
S	-	-	60	3	-	-	-	-	-	-	-	-	
IRRIGATION APPLI	IED (MM)												
Avg applied (mm)	-	-	15	40	75	80	100	75	35	25	-	-	
PIVOT 2 + 3 (LINE	AR AND CENTRE PI	/OT): OVERSEER D	EFAULT (FIXED) N:	2.5 P:0.1 K:1.6 S:2.5	CA:9.3 MG:2.2 NA:	9.5							
Supplied (mm)	-	-	16	42	79	84	105	79	37	26	-	-	
Applied (mm)	-	-	15	40	75	80	100	75	35	25	-	-	
Depth (mm)	-	-	5	5	5	5	5	5	5	5	-	-	
Return (days)	-	-	1	1	1	1	1	1	1	1	-	-	

			_			NITROGEN			PHOSPHORUS					
	SOIL	IRRIGATOR	AREA	TOTAL LOST	LOST	DRAINAGE ¹	SURPLUS	ADDED ²	TOTAL LOST	LOST	SOIL P LOSS RISK	FERT P LOSS RISK	EFF P LOSS RISK	
1	Waka_1a.1	Pivot 2 + 3	5.9 ha (100%)	173 kg	29 kg/ha	16.6 ppm	238 kg/ha	231 kg/ha	4 kg	0.7 kg/ha	Low	Low	Low	

1 - N concentration due to leaching in drainage water at the bottom of the root zone.

2 - N added as fertiliser, effluent and organic only

SOIL/IRRIGATION - OTHER VALUES

							то е	50CM		то 150СМ				
SOIL	IRRIGATOR	AREA	DRAINAGE	RUNOFF	AET	FIELD CAPACITY	WILTING POINT	SATURATION	PAW	FIELD CAPACITY	WILTING POINT	SATURATION	PAW	
Waka_1a.1	Pivot 2 + 3	5.9 ha (100%)	185 mm	0 mm	891 mm	207 mm	111 mm	264 mm	96 mm	-	-	-	-	

MODEL NOTES

Overview

Maintenance nutrient requirements for this block take account of nutrients added in effluent.

Olsen P (38) is above that required for near maximum pasture production (30). See a consultant about reducing fertiliser P inputs. Note that on high producing dairy farms, target Olsen P levels are higher.

Soil P loss status is high. Consider reducing Olsen P levels.

Fertiliser P loss is greater than 10% of total P loss - this is outside the range of data available for New Zealand and P loss data should be used with caution. Potential P loss from fertiliser is high. Check fertiliser rates are not too high. If P is applied in high risk months consider alternative months of application or changing the form of P.

The change in inorganic soil pool indicates that fertiliser nutrients can be reduced for Ca

Estimated change in soil test values for samples taken to 7.5cm:

- Increase in Olsen P test of 1 units
- No change in QT K test
- Increase in QT Mg test of 2 units

N losses from the root zone from this block exceed 11.3 ppm. This could contribute to high drinking water levels. The drinking water standard is 11.3 ppm. Note that the drinking water standard is not a environmental water quality standard, which is usually lower than the drinking water standard or a regulatory standard.Consider mitigation options to reduce this loss

Soil is slowly acidifying and would be neutralised by a maintenance lime application of 210 kg/ha/yr pure lime. Review soil pH and lime requirement.

	TOTAL LOS	S (KG/YR)			LOSS PER HA (K	G/YR)				
Nitrogen	173				29					
Phosphorus	4				0.7					
NUTRIENTS ADDED (KG/HA/YR)		Ν	Р	к	s	CA	MG	NA		
Effluent added	~	53	5	63	4	8	3	2		
Fertiliser, lime and other	~	178	36	0	63	80	0	0		
Irrigation		12	0	7	12	43	10	44		
Supplements fed on blocks	~	45	4	39	3	8	3	2		
Rain/clover fixation	~	117	0	2	4	2	4	16		
NUTRIENTS REMOVED (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Leaching, runoff and direct losses	~	29	0.7	29	81	72	2	15		
As product		105	18	25	6	23	2	7		
Transfer	~	62	5	52	3	10	3	2		
Effluent exported		0	0	0	0	0	0	0		
To atmosphere	~	87	0	0	0	0	0	0		
As supplements and crop residues		0	0	0	0	0	0	0		
CHANGE IN POOLS (KG/HA/YR)		Ν	Р	к	S	CA	MG	NA		
Organic pool		121	16	0	-4	0	0	0		
Inorganic mineral	~	0	1	-12	0	-1	-2	-2		
Inorganic soil pool		0	4	17	0	39	14	42		

Worth Pivot 2 - Eff (Waka_3a.1) Pasture - Flat, 6.9 ha

Pasture - Flat,

BLUCK DETAILS												
Aron	6.9	Average	12.1	Average	609	Annual	923	Latitudo	112 6/1/1272	Longitudo	172.443329	
Area	ha	temp	°C	rainfall	mm/yr	PET	mm/yr	Latitude	-45.044572	Longitude	172.445529	
Dictorco												

29 kg/ha | **203** kg

0.7 kg/ha | 5 kg

Distance 30 from km coast

SOILS

100% WAKA_3A.1

6.9 ha Pallic

PASTURE

Pasture growth	18,939 kg DM/ha/yr	Removed	0 kg DM/ha/yr
Utilisation	85 %	Dairy	29.04 rsu/ha
Intake	16,098 kg DM/ha/yr		

Block type	Pasture
Topography	Flat
Pasture type	Ryegrass/white clover
Cultivated in last 5 ye	ears No
Animals present	Yes

Hydrophobic condition	Use default
Susceptibility to pugging	Rare
ls compacted	No
Naturally high water table	No

	1					1						
	JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN
RSU/HA												
Dairy	0.13	1.63	2.7	3.42	3.55	3.92	3.68	2.63	2.75	2.4	2.23	-
FERTILISER APPLI	IED (KG/HA)											
N	-	-	40	30	24	22	22	11	18	22	-	-
Р	-	-	36	-	-	-	-	-	-	-	-	-
К	-	-	-	-	-	-	-	-	-	-	-	-
S	-	-	60	3	-	-	-	-	-	-	-	-
IRRIGATION APPL	IED (MM)											
Avg applied (mm)	-	-	15	40	70	85	100	75	35	25	-	-
PIVOT 2 + 3 (LINE/	AR AND CENTRE PI	/OT): OVERSEER D	EFAULT (FIXED) N:	2.5 P:0.1 K:1.6 S:2.5	CA:9.3 MG:2.2 NA:	9.5						
Supplied (mm)	-	-	16	42	74	89	105	79	37	26	-	-
Applied (mm)	-	-	15	40	70	85	100	75	35	25	-	-
Depth (mm)	-	-	5	5	5	5	5	5	5	5	-	-
Return (days)	-	-	1	1	1	1	1	1	1	1	-	-

			NITROGEN					PHOSPHORUS					
SOIL	IRRIGATOR	AREA	TOTAL LOST	LOST	DRAINAGE ¹	SURPLUS	ADDED ²	TOTAL LOST	LOST	SOIL P LOSS RISK	FERT P LOSS RISK	EFF P LOSS RISK	
Waka_3a.1	Pivot 2 + 3	6.9 ha (100%)	203 kg	29 kg/ha	16.6 ppm	237 kg/ha	231 kg/ha	5 kg	0.7 kg/ha	Low	Low	Low	

1 - N concentration due to leaching in drainage water at the bottom of the root zone.

2 - N added as fertiliser, effluent and organic only

SOIL/IRRIGATION - OTHER VALUES

							то 6	юсм			TO 1	50CM	
SOIL	IRRIGATOR	AREA	DRAINAGE	RUNOFF	AET	FIELD CAPACITY	WILTING POINT	SATURATION	PAW	FIELD CAPACITY	WILTING POINT	SATURATION	PAW
Waka_3a.1	Pivot 2 + 3	6.9 ha (100%)	185 mm	0 mm	891 mm	195 mm	96 mm	261 mm	99 mm	-	-	-	_

MODEL NOTES

Overview

Maintenance nutrient requirements for this block take account of nutrients added in effluent.

Olsen P (38) is above that required for near maximum pasture production (30). See a consultant about reducing fertiliser P inputs. Note that on high producing dairy farms, target Olsen P levels are higher.

Soil P loss status is high. Consider reducing Olsen P levels.

Fertiliser P loss is greater than 10% of total P loss - this is outside the range of data available for New Zealand and P loss data should be used with caution. Potential P loss from fertiliser is high. Check fertiliser rates are not too high. If P is applied in high risk months consider alternative months of application or changing the form of P.

The change in inorganic soil pool indicates that fertiliser nutrients can be reduced for Ca

Estimated change in soil test values for samples taken to 7.5cm:

- Increase in Olsen P test of 1 units
- No change in QT K test
- Increase in QT Mg test of 2 units

N losses from the root zone from this block exceed 11.3 ppm. This could contribute to high drinking water levels. The drinking water standard is 11.3 ppm. Note that the drinking water standard is not a environmental water quality standard, which is usually lower than the drinking water standard or a regulatory standard.Consider mitigation options to reduce this loss

Soil is slowly acidifying and would be neutralised by a maintenance lime application of 210 kg/ha/yr pure lime. Review soil pH and lime requirement.

	TOTAL LOS	S (KG/YR)			LOSS PER HA (K	G/YR)				
Nitrogen	203				29					
Phosphorus	5				0.7					
NUTRIENTS ADDED (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Effluent added	~	53	5	63	4	8	3	2		
Fertiliser, lime and other	~	178	36	0	63	80	0	0		
Irrigation		12	0	7	12	43	10	44		
Supplements fed on blocks	~	45	4	39	3	8	3	2		
Rain/clover fixation	~	117	0	2	4	2	4	16		
NUTRIENTS REMOVED (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Leaching, runoff and direct losses	~	29	0.7	29	81	72	2	15		
As product		105	18	25	6	23	2	7		
Transfer	~	62	5	52	3	10	3	2		
Effluent exported		0	0	0	0	0	0	0		
To atmosphere	~	86	0	0	0	0	0	0		
As supplements and crop residues		0	0	0	0	0	0	0		
CHANGE IN POOLS (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Organic pool		122	16	0	-4	0	0	0		
Inorganic mineral	~	0	1	-12	0	-1	-2	-2		
Inorganic soil pool		0	4	17	0	39	14	42		

Worth Pivot 3 (Waka_3a.1) Pasture - Flat, 0.7 ha

BLOCK DETAILS											
Area	0.7 ha	Average temp	12.1 °C	Average rainfall	609 mm/yr	Annual PET	923 mm/yr	Latitude	-43.644372	Longitude	172.443329

27 kg/ha | 19 kg

0.6 kg/ha | **0** kg

Distance	30
from	50 km
coast	KIII

SOILS

100% WAKA_3A.1

0.7 ha Pallic

PASTURE

Pasture growth	18,939 kg DM/ha/yr	Removed	0 kg DM/ha/yr
Utilisation	85 %	Dairy	29.04 rsu/ha
Intake	16,098 kg DM/ha/yr		

Block type	Pasture
Topography	Flat
Pasture type	Ryegrass/white clover
Cultivated in last 5 y	vears No
Animals present	Yes

Hydrophobic condition	Use default
Susceptibility to pugging	Rare
ls compacted	No
Naturally high water table	No

	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN
RSU/HA	RSU/HA											
Dairy	0.13	1.63	2.7	3.42	3.55	3.92	3.68	2.63	2.75	2.4	2.23	-
FERTILISER APPLI	TERTILISER APPLIED (KG/HA)											
N	-	-	40	30	24	22	22	11	18	22	-	-
Р	-	-	36	-	-	-	-	-	-	-	-	-
К	-	-	-	-	-	-	-	-	-	-	-	-
S	-	-	60	3	-	-	-	-	-	-	-	-
IRRIGATION APPLI	IED (MM)											
Avg applied (mm)	-	-	15	40	70	85	100	75	35	25	-	-
PIVOT 2 + 3 (LINE	AR AND CENTRE PI	VOT): OVERSEER D	EFAULT (FIXED) N:	2.5 P:0.1 K:1.6 S:2.5	CA:9.3 MG:2.2 NA:	9.5						
Supplied (mm)	-	-	16	42	74	89	105	79	37	26	-	-
Applied (mm)	-	-	15	40	70	85	100	75	35	25	-	-
Depth (mm)	-	-	5	5	5	5	5	5	5	5	-	-
Return (days)	-	-	1	1	1	1	1	1	1	1	-	-

			NITROGEN					PHOSPHORUS				
SOIL	IRRIGATOR	AREA	TOTAL LOST	LOST	DRAINAGE ¹	SURPLUS	ADDED ²	TOTAL LOST	LOST	SOIL P LOSS RISK	FERT P LOSS RISK	EFF P LOSS RISK
Waka_3a.1	Pivot 2 + 3	0.7 ha (100%)	19 kg	27 kg/ha	15.5 ppm	202 kg/ha	178 kg/ha	0 kg	0.6 kg/ha	Low	Low	N/A

1 - N concentration due to leaching in drainage water at the bottom of the root zone.

2 - N added as fertiliser, effluent and organic only

SOIL/IRRIGATION - OTHER VALUES

						то 60СМ				то 150СМ			
SOIL	IRRIGATOR	AREA	DRAINAGE	RUNOFF	AET	FIELD CAPACITY	WILTING POINT	SATURATION	PAW	FIELD CAPACITY	WILTING POINT	SATURATION	PAW
Waka_3a.1	Pivot 2 + 3	0.7 ha (100%)	185 mm	0 mm	891 mm	195 mm	96 mm	261 mm	99 mm	-	-	-	-

MODEL NOTES

Overview

Use maintenance K analysis with caution as maintenance K levels were less than 10 kg K/ha.

Olsen P (34) is above that required for near maximum pasture production (30). See a consultant about reducing fertiliser P inputs. Note that on high producing dairy farms, target Olsen P levels are higher.

Soil P loss status is high. Consider reducing Olsen P levels.

Fertiliser P loss is greater than 10% of total P loss - this is outside the range of data available for New Zealand and P loss data should be used with caution. Potential P loss from fertiliser is high. Check fertiliser rates are not too high. If P is applied in high risk months consider alternative months of application or changing the form of P.

The change in inorganic soil pool indicates that fertiliser nutrients can be reduced for Ca

Estimated change in soil test values for samples taken to 7.5cm:

- No change in Olsen P test
- No change in QT K test
- Increase in QT Mg test of 1 units

N losses from the root zone from this block exceed 11.3 ppm. This could contribute to high drinking water levels. The drinking water standard is 11.3 ppm. Note that the drinking water standard is not a environmental water quality standard, which is usually lower than the drinking water standard or a regulatory standard.Consider mitigation options to reduce this loss

Soil is slowly acidifying and would be neutralised by a maintenance lime application of 250 kg/ha/yr pure lime. Review soil pH and lime requirement.

	TOTAL LOS	S (KG/YR)			LOSS PER HA (KG/YR)				
Nitrogen	19				27				
Phosphorus	0				0.6				
NUTRIENTS ADDED (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA	
Effluent added	~	0	0	0	0	0	0	0	
Fertiliser, lime and other	~	178	36	0	63	80	0	0	
Irrigation		12	0	7	12	43	10	44	
Supplements fed on blocks	~	45	4	39	3	8	3	2	
Rain/clover fixation	~	134	0	2	4	2	4	16	
NUTRIENTS REMOVED (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA	
Leaching, runoff and direct losses	~	27	0.6	15	79	59	1	4	
As product		105	18	25	6	23	2	7	
Transfer	~	62	5	52	3	10	3	2	
Effluent exported		0	0	0	0	0	0	0	
To atmosphere	~	86	0	0	0	0	0	0	
As supplements and crop residues		0	0	0	0	0	0	0	
CHANGE IN POOLS (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA	
Organic pool		89	15	0	-6	0	0	0	
Inorganic mineral	~	0	1	-43	0	-1	-2	-2	
Inorganic soil pool		0	1	-1	0	43	12	52	

North Pivot 3 - Eff (temp_1a.1) Pasture - Flat, 2.7 ha

BLOCK DETAILS										
Area	2.7 ha	Average temp	0	609 mm/yr	923 mm/yr	Latitude	-43.644372	Longitude	172.443329	
Distance	20									

29 kg/ha | **79** kg

0.5 kg/ha | 1 kg

30 from km coast

SOILS

100% TEMP_1A.1

2.7 ha Pallic

PASTURE

Pasture growth	18,939 kg DM/ha/yr	Removed	0 kg DM/ha/yr
Utilisation	85 %	Dairy	29.04 rsu/ha
Intake	16,098 kg DM/ha/yr		

Block type	Pasture
Topography	Flat
Pasture type	Ryegrass/white clover
Cultivated in last 5 ye	ears No
Animals present	Yes

Hydrophobic condition	Use default
Susceptibility to pugging	Rare
ls compacted	No
Naturally high water table	No

						1							
	JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	
RSU/HA													
Dairy	0.13	1.63	2.7	3.42	3.55	3.92	3.68	2.63	2.75	2.4	2.23	-	
FERTILISER APPLIED (KG/HA)													
N 40 30 24 22 22 11 18 22													
Р	-	-	36	-	-	-	-	-	-	-	-	-	
К	-	-	-	-	-	-	-	-	-	-	-	-	
S	-	-	60	3	-	-	-	-	-	-	-	-	
IRRIGATION APPL	IED (MM)												
Avg applied (mm)	-	-	15	40	75	80	100	75	35	25	-	-	
PIVOT 2 + 3 (LINE/	AR AND CENTRE PI	/OT): OVERSEER D	EFAULT (FIXED) N:	2.5 P:0.1 K:1.6 S:2.5	CA:9.3 MG:2.2 NA:	9.5							
Supplied (mm)	-	-	16	42	79	84	105	79	37	26	-	-	
Applied (mm)	-	-	15	40	75	80	100	75	35	25	-	-	
Depth (mm)	-	-	5	5	5	5	5	5	5	5	-	-	
Return (days)	-	-	1	1	1	1	1	1	1	1	-	-	

					NITROGEN				PHOS	PHORUS		
SOIL	IRRIGATOR	AREA	TOTAL LOST	LOST	DRAINAGE ¹	SURPLUS	ADDED ²	TOTAL LOST	LOST	SOIL P LOSS RISK	FERT P LOSS RISK	EFF P LOSS RISK
Temp_1a.1	Pivot 2 + 3	2.7 ha (100%)	79 kg	29 kg/ha	16.6 ppm	238 kg/ha	231 kg/ha	1 kg	0.5 kg/ha	Low	Low	Low

1 - N concentration due to leaching in drainage water at the bottom of the root zone.

2 - N added as fertiliser, effluent and organic only

SOIL/IRRIGATION - OTHER VALUES

							то е	юсм			TO 1	50CM	
SOIL	IRRIGATOR	AREA	DRAINAGE	RUNOFF	AET	FIELD CAPACITY	WILTING POINT	SATURATION	PAW	FIELD CAPACITY	WILTING POINT	SATURATION	PAW
Temp_1a.1	Pivot 2 + 3	2.7 ha (100%)	185 mm	0 mm	891 mm	195 mm	96 mm	261 mm	99 mm	-	-	-	-

MODEL NOTES

Overview

Maintenance nutrient requirements for this block take account of nutrients added in effluent.

Olsen P (38) is above that required for near maximum pasture production (30). See a consultant about reducing fertiliser P inputs. Note that on high producing dairy farms, target Olsen P levels are higher.

Soil P loss status is high. Consider reducing Olsen P levels.

Fertiliser P loss is greater than 10% of total P loss - this is outside the range of data available for New Zealand and P loss data should be used with caution. Potential P loss from fertiliser is high. Check fertiliser rates are not too high. If P is applied in high risk months consider alternative months of application or changing the form of P.

The change in inorganic soil pool indicates that fertiliser nutrients can be reduced for Ca

Estimated change in soil test values for samples taken to 7.5cm:

- Increase in Olsen P test of 1 units
- No change in QT K test
- Increase in QT Mg test of 2 units

N losses from the root zone from this block exceed 11.3 ppm. This could contribute to high drinking water levels. The drinking water standard is 11.3 ppm. Note that the drinking water standard is not a environmental water quality standard, which is usually lower than the drinking water standard or a regulatory standard.Consider mitigation options to reduce this loss

Soil is slowly acidifying and would be neutralised by a maintenance lime application of 210 kg/ha/yr pure lime. Review soil pH and lime requirement.

	TOTAL LOS	S (KG/YR)			LOSS PER HA (K	G/YR)				
Nitrogen	79				29					
Phosphorus	1				0.5					
NUTRIENTS ADDED (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Effluent added	~	53	5	63	4	8	3	2		
Fertiliser, lime and other	~	178	36	0	63	80	0	0		
Irrigation		12	0	7	12	43	10	44		
Supplements fed on blocks	~	45	4	39	3	8	3	2		
Rain/clover fixation	~	117	0	2	4	2	4	16		
NUTRIENTS REMOVED (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Leaching, runoff and direct losses	~	29	0.5	29	81	72	2	15		
As product		105	18	25	6	23	2	7		
Transfer	~	62	5	52	3	10	3	2		
Effluent exported		0	0	0	0	0	0	0		
To atmosphere	~	87	0	0	0	0	0	0		
As supplements and crop residues		0	0	0	0	0	0	0		
CHANGE IN POOLS (KG/HA/YR)		Ν	Р	К	5	CA	MG	NA		
Organic pool		122	16	0	-4	0	0	0		
Inorganic mineral	~	0	1	-12	0	-1	-2	-2		
Inorganic soil pool		0	5	17	0	39	14	42		

South block sprinklers (Flax_4a.1) Pasture - Flat, 9.9 ha

BLOCK DETAILS											
Area	9.9 ha	Average temp	Average rainfall	609 mm/yr	Annual PET	923 mm/yr	Latitude	-43.6444	Longitude	172.4433	
Distant											

23 kg/ha | 225 kg

0.5 kg/ha | 5 kg

Distance	30
from	
coast	km

SOILS

100% FLAX_4A.1

9.9 ha Gley

PASTURE

Pasture growth	18,939 kg DM/ha/yr	Removed	0 kg DM/ha/yr
Utilisation	85 %	Dairy	29.04 rsu/ha
Intake	16,098 kg DM/ha/yr		

Block type	Pasture
Topography	Flat
Pasture type	Ryegrass/white clover
Cultivated in last 5 y	ears No
Animals present	Yes

Hydrophobic condition	Use default
Susceptibility to pugging	Occasional
ls compacted	No
Naturally high water table	No

	JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	
RSU/HA													
Dairy	0.13	1.63	2.7	3.42	3.55	3.92	3.68	2.63	2.75	2.4	2.23	-	
FERTILISER APPLIED (KG/HA)													
N 40 30 24 22 22 11 18 22													
Р	-	-	36	-	-	-	-	-	-	-	-	-	
К	-	-	-	-	-	-	-	-	-	-	-	-	
S	-	-	60	3	-	-	-	-	-	-	-	-	
IRRIGATION APPL	IED (MM)												
Avg applied (mm)	-	-	-	70	70	105	105	70	35	-	-	-	
SPRAYLINES 2 (SF	PRAYLINES): OVERS	EER DEFAULT (FIX	ED) N:2.5 P:0.1 K:1.	6 S:2.5 CA:9.3 MG:2	.2 NA:9.5								
Supplied (mm)	-	-	-	74	74	110	110	74	37	-	-	-	
Applied (mm)	-	-	-	70	70	105	105	70	35	-	-	-	
Depth (mm)	-	-	35	35	35	35	35	35	35	-	-	-	
Return (days)	-	-	8	8	8	8	8	8	8	-	-	-	

					NITROGEN				PHOS	PHORUS		
SOIL	IRRIGATOR	AREA	TOTAL LOST	LOST	DRAINAGE ¹	SURPLUS	ADDED ²	TOTAL LOST	LOST	SOIL P LOSS RISK	FERT P LOSS RISK	EFF P LOSS RISK
Flax_4a.1	Spraylines 2	9.9 ha (100%)	225 kg	23 kg/ha	12.2 ppm	208 kg/ha	178 kg/ha	5 kg	0.5 kg/ha	Low	Low	N/A

1 - N concentration due to leaching in drainage water at the bottom of the root zone.

2 - N added as fertiliser, effluent and organic only

SOIL/IRRIGATION - OTHER VALUES

							то 6	50CM			TO 1	50CM	
SOIL IRRIGATOR AREA		AREA	DRAINAGE	RUNOFF	AET	FIELD CAPACITY	WILTING POINT	SATURATION	PAW	FIELD CAPACITY	WILTING POINT	SATURATION	PAW
Flax_4a.1	Spraylines 2	9.9 ha (100%)	199 mm	0 mm	887 mm	249 mm	144 mm	300 mm	105 mm	-	-	-	-

MODEL NOTES

Overview

Olsen P (34) is above that required for near maximum pasture production (30). See a consultant about reducing fertiliser P inputs. Note that on high producing dairy farms, target Olsen P levels are higher.

Soil P loss status is high. Consider reducing Olsen P levels.

Fertiliser P loss is greater than 10% of total P loss - this is outside the range of data available for New Zealand and P loss data should be used with caution. Potential P loss from fertiliser is high. Check fertiliser rates are not too high. If P is applied in high risk months consider alternative months of application or changing the form of P.

The change in inorganic soil pool indicates that fertiliser nutrients can be reduced for Ca

Estimated change in soil test values for samples taken to 7.5cm:

- No change in Olsen P test
- No change in QT K test
- Increase in QT Mg test of 1 units

N losses from the root zone from this block exceed 11.3 ppm. This could contribute to high drinking water levels. The drinking water standard is 11.3 ppm. Note that the drinking water standard is not a environmental water quality standard, which is usually lower than the drinking water standard or a regulatory standard.Consider mitigation options to reduce this loss

Soil is slowly acidifying and would be neutralised by a maintenance lime application of 240 kg/ha/yr pure lime. Review soil pH and lime requirement.

	TOTAL LOS	S (KG/YR)			LOSS PER HA (KG/YR)					
Nitrogen	225				23					
Phosphorus	5				0.5					
NUTRIENTS ADDED (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Effluent added	\sim	0	0	0	0	0	0	0		
Fertiliser, lime and other	~	178	36	0	63	80	0	0		
Irrigation		12	0	8	12	44	11	45		
Supplements fed on blocks	\sim	45	4	39	3	8	3	2		
Rain/clover fixation	~	140	0	2	4	2	4	16		
NUTRIENTS REMOVED (KG/HA/YR)		N	Р	К	S	CA	MG	NA		
Leaching, runoff and direct losses	~	23	0.5	15	79	56	1	5		
As product		105	18	25	6	23	2	7		
Transfer	\sim	62	5	52	3	10	3	2		
Effluent exported		0	0	0	0	0	0	0		
To atmosphere	~	102	0	0	0	0	0	0		
As supplements and crop residues		0	0	0	0	0	0	0		
CHANGE IN POOLS (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Organic pool		83	12	0	-6	0	0	0		
Inorganic mineral	~	0	4	-35	0	-1	-2	-2		
Inorganic soil pool		0	1	-9	0	47	12	52		

South block sprinklers (Temp_2a.1) Pasture - Flat, 1.8 ha

BLOCK DETAILS										
Area	1.8 ha	Average temp	Average rainfall	609 mm/yr	923 mm/yr	Latitude	-43.6444	Longitude	172.4433	
Distance										

25 kg/ha | 45 kg

0.4 kg/ha | 1 kg

Distance	30
from	km
coast	KIII

SOILS

100% TEMP_2A.1

1.8 ha Pallic

PASTURE

Pasture growth	18,939 kg DM/ha/yr	Removed	0 kg DM/ha/yr
Utilisation	tilisation 85 %		29.04 rsu/ha
Intake	16,098 kg DM/ha/yr		

Block type	Pasture
Topography	Flat
Pasture type	Ryegrass/white clover
Cultivated in last 5 yea	ars No
Animals present	Yes

Use default
Occasional
No
No

	JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN
XSU/HA												
Dairy	0.13	1.63	2.7	3.42	3.55	3.92	3.68	2.63	2.75	2.4	2.23	-
FERTILISER APPLIED (KG/HA)												
N	-	-	40	30	24	22	22	11	18	22	-	-
Ρ	-	-	36	-	-	-	-	-	-	-	-	-
К	-	-	-	-	-	-	-	-	-	-	-	-
S	-	-	60	3	-	-	-	-	-	-	-	-
IRRIGATION APPL	IED (MM)											
Avg applied (mm)	-	-	35	35	70	105	105	70	35	-	-	-
SPRAYLINES 2 (SP	PRAYLINES): OVERS	EER DEFAULT (FIX	ED) N:2.5 P:0.1 K:1.	6 S:2.5 CA:9.3 MG:2	.2 NA:9.5							
Supplied (mm)	-	-	37	37	74	110	110	74	37	-	-	-
Applied (mm)	-	-	35	35	70	105	105	70	35	-	-	-
Depth (mm)	-	-	35	35	35	35	35	35	35	-	-	-
Return (days)	-	-	8	8	8	8	8	8	8	-	-	-

				PHOSPHORUS								
SOIL	IRRIGATOR	AREA	TOTAL LOST	LOST	DRAINAGE ¹	SURPLUS	ADDED ²	TOTAL LOST	LOST	SOIL P LOSS RISK	FERT P LOSS RISK	EFF P LOSS RISK
Temp_2a.1	Spraylines 2	1.8 ha (100%)	45 kg	25 kg/ha	13.5 ppm	204 kg/ha	178 kg/ha	1 kg	0.4 kg/ha	Low	Low	N/A

1 - N concentration due to leaching in drainage water at the bottom of the root zone.

2 - N added as fertiliser, effluent and organic only

SOIL/IRRIGATION - OTHER VALUES

							то 60СМ				то 150СМ			
SOIL	IRRIGATOR	AREA	DRAINAGE	RUNOFF	AET	FIELD CAPACITY	WILTING POINT	SATURATION	PAW	FIELD CAPACITY	WILTING POINT	SATURATION	PAW	
Temp_2a.1	Spraylines 2	1.8 ha (100%)	199 mm	0 mm	887 mm	198 mm	93 mm	261 mm	105 mm	-	-	-	-	

MODEL NOTES

Overview

Use maintenance K analysis with caution as maintenance K levels were less than 10 kg K/ha.

Olsen P (34) is above that required for near maximum pasture production (30). See a consultant about reducing fertiliser P inputs. Note that on high producing dairy farms, target Olsen P levels are higher.

Soil P loss status is high. Consider reducing Olsen P levels.

Fertiliser P loss is greater than 10% of total P loss - this is outside the range of data available for New Zealand and P loss data should be used with caution. Potential P loss from fertiliser is high. Check fertiliser rates are not too high. If P is applied in high risk months consider alternative months of application or changing the form of P.

The change in inorganic soil pool indicates that fertiliser nutrients can be reduced for Ca

Estimated change in soil test values for samples taken to 7.5cm:

- No change in Olsen P test
- No change in QT K test
- Increase in QT Mg test of 1 units

N losses from the root zone from this block exceed 11.3 ppm. This could contribute to high drinking water levels. The drinking water standard is 11.3 ppm. Note that the drinking water standard is not a environmental water quality standard, which is usually lower than the drinking water standard or a regulatory standard.Consider mitigation options to reduce this loss

Soil is slowly acidifying and would be neutralised by a maintenance lime application of 250 kg/ha/yr pure lime. Review soil pH and lime requirement.

	TOTAL LOS	S (KG/YR)			LOSS PER HA (KG/YR)					
Nitrogen	45				25					
Phosphorus	1				0.4					
NUTRIENTS ADDED (KG/HA/YR)		Ν	Р	К	s	CA	МG	NA		
Effluent added	~	0	0	0	0	0	0	0		
Fertiliser, lime and other	~	178	36	0	63	80	0	0		
Irrigation		12	0	8	12	44	11	45		
Supplements fed on blocks	~	45	4	39	3	8	3	2		
Rain/clover fixation	~	136	0	2	4	2	4	16		
NUTRIENTS REMOVED (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Leaching, runoff and direct losses	~	25	0.4	15	79	58	1	5		
As product		105	18	25	6	23	2	7		
Transfer	~	62	5	52	3	10	3	2		
Effluent exported		0	0	0	0	0	0	0		
To atmosphere	~	91	0	0	0	0	0	0		
As supplements and crop residues		0	0	0	0	0	0	0		
CHANGE IN POOLS (KG/HA/YR)		Ν	Р	К	5	CA	MG	NA		
Organic pool		88	15	0	-6	0	0	0		
Inorganic mineral	~	0	1	-43	0	-1	-2	-2		
Inorganic soil pool		0	1	-1	0	45	12	52		

South block sprinklers (Waka_1a.1) Pasture - Flat, 3.8 ha

BLOCK DETAILS											
Area	3.8 ha	Average temp	-	609 mm/yr	Annual PET	923 mm/yr	Latitude	-43.6444	Longitude	172.4433	
Distance											

26 kg/ha | 98 kg

0.6 kg/ha | **2** kg

Distance	30
from	
coast	km
coust	

SOILS

100% WAKA_1A.1

3.8 ha Pallic

PASTURE

Pasture growth	18,939 kg DM/ha/yr	Removed	0 kg DM/ha/yr
Utilisation	85 %	Dairy	29.04 rsu/ha
Intake	16,098 kg DM/ha/yr		

Block type	Pasture
Topography	Flat
Pasture type	Ryegrass/white clover
Cultivated in last 5 yea	ars No
Animals present	Yes

Hydrophobic condition	Use default
Susceptibility to pugging	Occasional
ls compacted	No
Naturally high water table	No

	JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN
RSU/HA	RSU/HA											
Dairy	0.13	1.63	2.7	3.42	3.55	3.92	3.68	2.63	2.75	2.4	2.23	-
FERTILISER APPLI	rertiliser Applied (KG/HA)											
N	-	-	40	30	24	22	22	11	18	22	-	-
Р	-	-	36	-	-	-	-	-	-	-	-	-
К	-	-	-	-	-	-	-	-	-	-	-	-
S	-	-	60	3	-	-	-	-	-	-	-	-
IRRIGATION APPLI	IED (MM)											
Avg applied (mm)	-	-	35	35	70	105	105	70	35	-	-	-
SPRAYLINES 2 (SP	PRAYLINES): OVERS	EER DEFAULT (FIX	ED) N:2.5 P:0.1 K:1.	6 S:2.5 CA:9.3 MG:2	.2 NA:9.5							
Supplied (mm)	-	-	37	37	74	110	110	74	37	-	-	-
Applied (mm)	-	-	35	35	70	105	105	70	35	-	-	-
Depth (mm)	-	-	35	35	35	35	35	35	35	-	-	-
Return (days)	-	-	8	8	8	8	8	8	8	-	-	-

	NITROGEN					PHOSPHORUS						
SOIL	IRRIGATOR	AREA	TOTAL LOST	LOST	DRAINAGE ¹	SURPLUS	ADDED ²	TOTAL LOST	LOST	SOIL P LOSS RISK	FERT P LOSS RISK	EFF P LOSS RISK
Waka_1a.1	Spraylines 2	3.8 ha (100%)	98 kg	26 kg/ha	13.9 ppm	205 kg/ha	178 kg/ha	2 kg	0.6 kg/ha	Low	Low	N/A

1 - N concentration due to leaching in drainage water at the bottom of the root zone.

2 - N added as fertiliser, effluent and organic only

SOIL/IRRIGATION - OTHER VALUES

						то 60СМ			то 150СМ				
SOIL	IRRIGATOR	AREA	DRAINAGE	RUNOFF	AET	FIELD CAPACITY	WILTING POINT	SATURATION	PAW	FIELD CAPACITY	WILTING POINT	SATURATION	PAW
Waka_1a.1	Spraylines 2	3.8 ha (100%)	199 mm	0 mm	887 mm	207 mm	111 mm	264 mm	96 mm	-	-	-	-

MODEL NOTES

Overview

Use maintenance K analysis with caution as maintenance K levels were less than 10 kg K/ha.

Olsen P (34) is above that required for near maximum pasture production (30). See a consultant about reducing fertiliser P inputs. Note that on high producing dairy farms, target Olsen P levels are higher.

Soil P loss status is high. Consider reducing Olsen P levels.

Fertiliser P loss is greater than 10% of total P loss - this is outside the range of data available for New Zealand and P loss data should be used with caution. Potential P loss from fertiliser is high. Check fertiliser rates are not too high. If P is applied in high risk months consider alternative months of application or changing the form of P.

The change in inorganic soil pool indicates that fertiliser nutrients can be reduced for Ca

Estimated change in soil test values for samples taken to 7.5cm:

- No change in Olsen P test
- No change in QT K test
- Increase in QT Mg test of 1 units

N losses from the root zone from this block exceed 11.3 ppm. This could contribute to high drinking water levels. The drinking water standard is 11.3 ppm. Note that the drinking water standard is not a environmental water quality standard, which is usually lower than the drinking water standard or a regulatory standard.Consider mitigation options to reduce this loss

Soil is slowly acidifying and would be neutralised by a maintenance lime application of 250 kg/ha/yr pure lime. Review soil pH and lime requirement.

	TOTAL LOS	TOTAL LOSS (KG/YR) 98				LOSS PER HA (KG/YR) 26				
Nitrogen	98									
Phosphorus	2				0.6					
NUTRIENTS ADDED (KG/HA/YR)		Ν	Р	К	s	CA	MG	NA		
Effluent added	~	0	0	0	0	0	0	0		
Fertiliser, lime and other	~	178	36	0	63	80	0	0		
Irrigation		12	0	8	12	44	11	45		
Supplements fed on blocks	~	45	4	39	3	8	3	2		
Rain/clover fixation	~	137	0	2	4	2	4	16		
NUTRIENTS REMOVED (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Leaching, runoff and direct losses	~	26	0.6	15	79	58	1	5		
As product		105	18	25	6	23	2	7		
Transfer	~	62	5	52	3	10	3	2		
Effluent exported		0	0	0	0	0	0	0		
To atmosphere	~	93	0	0	0	0	0	0		
As supplements and crop residues		0	0	0	0	0	0	0		
CHANGE IN POOLS (KG/HA/YR)		Ν	Р	к	S	CA	MG	NA		
Organic pool		86	15	0	-6	0	0	0		
Inorganic mineral	~	0	1	-43	0	-1	-2	-2		
Inorganic soil pool		0	1	-1	0	44	12	52		

South block sprinklers (Waka_3a.1) Pasture - Flat, 6.6 ha

BLOCK DETAILS									
Area	Average temp	0	609 mm/yr	923 mm/yr	Latitude	-43.6444	Longitude	172.4433	
Distanco									

26 kg/ha | 172 kg

0.6 kg/ha | 4 kg

Distance	30
from	20
	km
coast	

SOILS

100% WAKA_3A.1

6.6 ha Pallic

PASTURE

Pasture growth	18,939 kg DM/ha/yr	Removed	0 kg DM/ha/yr
Utilisation	85 %	Dairy	29.04 rsu/ha
Intake	16,098 kg DM/ha/yr		

Block type	Pasture
Topography	Flat
Pasture type	Ryegrass/white clover
Cultivated in last 5	years No
Animals present	Yes

Hydrophobic condition	Use default		
Susceptibility to pugging	Occasional		
ls compacted	No		
Naturally high water table	No		

	JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN
RSU/HA												
Dairy	0.13	1.63	2.7	3.42	3.55	3.92	3.68	2.63	2.75	2.4	2.23	-
FERTILISER APPLIED (KG/HA)												
N	-	-	40	30	24	22	22	11	18	22	-	-
Р	-	-	36	-	-	-	-	-	-	-	-	-
К	-	-	-	-	-	-	-	-	-	-	-	-
S	-	-	60	3	-	-	-	-	-	-	-	-
IRRIGATION APPL	IED (MM)											
Avg applied (mm)	-	-	35	35	70	105	105	70	35	-	-	-
SPRAYLINES 2 (SF	PRAYLINES): OVERS	EER DEFAULT (FIX	ED) N:2.5 P:0.1 K:1.	6 S:2.5 CA:9.3 MG:2	.2 NA:9.5							
Supplied (mm)	-	-	37	37	74	110	110	74	37	-	-	-
Applied (mm)	-	-	35	35	70	105	105	70	35	-	-	-
Depth (mm)	-	-	35	35	35	35	35	35	35	-	-	-
Return (days)	-	-	8	8	8	8	8	8	8	-	-	-

	NITROGEN				PHOSPHORUS							
SOIL	IRRIGATOR	AREA	TOTAL LOST	LOST	DRAINAGE ¹	SURPLUS	ADDED ²	TOTAL LOST	LOST	SOIL P LOSS RISK	FERT P LOSS RISK	EFF P LOSS RISK
Waka_3a.1	Spraylines 2	6.6 ha (100%)	172 kg	26 kg/ha	14 ppm	203 kg/ha	178 kg/ha	4 kg	0.6 kg/ha	Low	Low	N/A

1 - N concentration due to leaching in drainage water at the bottom of the root zone.

2 - N added as fertiliser, effluent and organic only

SOIL/IRRIGATION - OTHER VALUES

						то 60СМ					TO 150CM			
SOIL	IRRIGATOR	AREA	DRAINAGE	RUNOFF	AET	FIELD CAPACITY	WILTING POINT	SATURATION	PAW	FIELD CAPACITY	WILTING POINT	SATURATION	PAW	
Waka_3a.1	Spraylines 2	6.6 ha (100%)	199 mm	0 mm	887 mm	195 mm	96 mm	261 mm	99 mm	-	-	-	-	

MODEL NOTES

Overview

Use maintenance K analysis with caution as maintenance K levels were less than 10 kg K/ha.

Olsen P (34) is above that required for near maximum pasture production (30). See a consultant about reducing fertiliser P inputs. Note that on high producing dairy farms, target Olsen P levels are higher.

Soil P loss status is high. Consider reducing Olsen P levels.

Fertiliser P loss is greater than 10% of total P loss - this is outside the range of data available for New Zealand and P loss data should be used with caution. Potential P loss from fertiliser is high. Check fertiliser rates are not too high. If P is applied in high risk months consider alternative months of application or changing the form of P.

The change in inorganic soil pool indicates that fertiliser nutrients can be reduced for Ca

Estimated change in soil test values for samples taken to 7.5cm:

- No change in Olsen P test
- No change in QT K test
- Increase in QT Mg test of 1 units

N losses from the root zone from this block exceed 11.3 ppm. This could contribute to high drinking water levels. The drinking water standard is 11.3 ppm. Note that the drinking water standard is not a environmental water quality standard, which is usually lower than the drinking water standard or a regulatory standard.Consider mitigation options to reduce this loss

Soil is slowly acidifying and would be neutralised by a maintenance lime application of 250 kg/ha/yr pure lime. Review soil pH and lime requirement.

	TOTAL LOS	S (KG/YR)			LOSS PER HA (KG/YR)					
Nitrogen	172				26					
Phosphorus	4				0.6					
NUTRIENTS ADDED (KG/HA/YR)		Ν	Р	К	s	CA	MG	NA		
Effluent added	~	0	0	0	0	0	0	0		
Fertiliser, lime and other	~	178	36	0	63	80	0	0		
Irrigation		12	0	8	12	44	11	45		
Supplements fed on blocks	~	45	4	39	3	8	3	2		
Rain/clover fixation	~	135	0	2	4	2	4	16		
NUTRIENTS REMOVED (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Leaching, runoff and direct losses	~	26	0.7	15	79	59	1	5		
As product		105	18	25	6	23	2	7		
Transfer	~	62	5	52	3	10	3	2		
Effluent exported		0	0	0	0	0	0	0		
To atmosphere	~	90	0	0	0	0	0	0		
As supplements and crop residues		0	0	0	0	0	0	0		
CHANGE IN POOLS (KG/HA/YR)		Ν	Р	к	S	CA	MG	NA		
Organic pool		88	15	0	-6	0	0	0		
Inorganic mineral	~	0	1	-43	0	-1	-2	-2		
Inorganic soil pool		0	1	-1	0	44	12	52		

South pivot - Eff (Waka_1a.1) Pasture - Flat, 14.7 ha

BLUCK DETAILS												
Area	14.7	Average	12.1	Average	609	Annual	923	Latitude	-43 6444	Longitude	172 4433	
	ha	temp	°C	rainfall	mm/yr	PET	mm/yr	Lutitude	1010 1 1 1	2011010000		
D' 1												

30 kg/ha | **446** kg

0.7 kg/ha | 10 kg

Distance	30
from	km
coast	KIII

SOILS

100% WAKA_1A.1

14.7 ha Pallic

PASTURE

Pasture growth	18,939 kg DM/ha/yr	Removed	0 kg DM/ha/yr
Utilisation	85 %	Dairy	29.04 rsu/ha
Intake	16,098 kg DM/ha/yr		

Block type	Pasture
Topography	Flat
Pasture type	Ryegrass/white clover
Cultivated in last 5	years No
Animals present	Yes

Hydrophobic condition	Use default
Susceptibility to pugging	Occasional
ls compacted	No
Naturally high water table	No

	JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN
RSU/HA												
Dairy	0.13	1.63	2.7	3.42	3.55	3.92	3.68	2.63	2.75	2.4	2.23	-
FERTILISER APPLIED (KG/HA)												
N	-	-	40	30	24	22	22	11	18	22	-	-
Р	-	-	36	-	-	-	-	-	-	-	-	-
К	-	-	-	-	-	-	-	-	-	-	-	-
S	-	-	60	3	-	-	-	-	-	-	-	-
IRRIGATION APPL	IED (MM)											
Avg applied (mm)	-	-	18	42	72	84	102	72	42	24	-	-
SOUTH PIVOT (LIN	VEAR AND CENTRE	PIVOT): OVERSEER	DEFAULT (FIXED)	N:2.5 P:0.1 K:1.6 S:2	2.5 CA:9.3 MG:2.2 N	IA:9.5						
Supplied (mm)	-	-	19	44	76	88	107	76	44	25	-	-
Applied (mm)	-	-	18	42	72	84	102	72	42	24	-	-
Depth (mm)	-	-	6	6	6	6	6	6	6	6	-	-
Return (days)	-	-	1	1	1	1	1	1	1	1	-	-

			NITROGEN						PHOSPHORUS				
SOIL	IRRIGATOR	AREA	TOTAL LOST	LOST	DRAINAGE ¹	SURPLUS	ADDED ²	TOTAL LOST	LOST	SOIL P LOSS RISK	FERT P LOSS RISK	EFF P LOSS RISK	
Waka_1a.1	South Pivot	14.7 ha (100%)	446 kg	30 kg/ha	16.2 ppm	239 kg/ha	231 kg/ha	10 kg	0.7 kg/ha	Low	Low	Low	

1 - N concentration due to leaching in drainage water at the bottom of the root zone.

2 - N added as fertiliser, effluent and organic only

SOIL/IRRIGATION - OTHER VALUES

							то е	50CM		то 150СМ			
SOIL	IRRIGATOR	AREA	DRAINAGE	RUNOFF	AET	FIELD CAPACITY	WILTING POINT	SATURATION	PAW	FIELD CAPACITY	WILTING POINT	SATURATION	PAW
Waka_1a.1	South Pivot	14.7 ha (100%)	196 mm	0 mm	891 mm	207 mm	111 mm	264 mm	96 mm	-	-	-	-

MODEL NOTES

Overview

Maintenance nutrient requirements for this block take account of nutrients added in effluent.

Olsen P (38) is above that required for near maximum pasture production (30). See a consultant about reducing fertiliser P inputs. Note that on high producing dairy farms, target Olsen P levels are higher.

Soil P loss status is high. Consider reducing Olsen P levels.

Fertiliser P loss is greater than 10% of total P loss - this is outside the range of data available for New Zealand and P loss data should be used with caution. Potential P loss from fertiliser is high. Check fertiliser rates are not too high. If P is applied in high risk months consider alternative months of application or changing the form of P.

The change in inorganic soil pool indicates that fertiliser nutrients can be reduced for Ca

Estimated change in soil test values for samples taken to 7.5cm:

- Increase in Olsen P test of 1 units
- No change in QT K test
- Increase in QT Mg test of 2 units

N losses from the root zone from this block exceed 11.3 ppm. This could contribute to high drinking water levels. The drinking water standard is 11.3 ppm. Note that the drinking water standard is not a environmental water quality standard, which is usually lower than the drinking water standard or a regulatory standard.Consider mitigation options to reduce this loss

Soil is slowly acidifying and would be neutralised by a maintenance lime application of 210 kg/ha/yr pure lime. Review soil pH and lime requirement.

NUTRIENT BUDGET

	TOTAL LOS	S (KG/YR)			LOSS PER HA (K	G/YR)			
Nitrogen	446				30				
Phosphorus	10				0.7				
NUTRIENTS ADDED (KG/HA/YR)		Ν	Р	К	s	CA	MG	NA	
Effluent added	~	53	5	63	4	8	3	2	
Fertiliser, lime and other	~	178	36	0	63	80	0	0	
Irrigation		12	0	8	12	45	11	45	
Supplements fed on blocks	\sim	45	4	39	3	8	3	2	
Rain/clover fixation	~	119	0	2	4	2	4	16	
NUTRIENTS REMOVED (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA	
Leaching, runoff and direct losses	~	30	0.7	29	81	72	2	16	
As product		105	18	25	6	23	2	7	
Transfer	~	62	5	52	З	10	3	2	
Effluent exported		0	0	0	0	0	0	0	
To atmosphere	~	90	0	0	0	0	0	0	
As supplements and crop residues		0	0	0	0	0	0	0	
CHANGE IN POOLS (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA	
Organic pool		120	16	0	-4	0	0	0	
Inorganic mineral	~	0	1	-12	0	-1	-2	-2	
Inorganic soil pool		0	4	17	0	39	14	43	

South pivot - Eff (Waka_1a.1) PL Pasture - Flat, 6 ha

BLOCK DETAILS												
Area	6 ha	Average temp	12.1 °C	Average rainfall	609 mm/yr	Annual PET	923 mm/yr	Latitude	-43.6444	Longitude	172.4433	
Dictorco												

10 kg/ha | 57 kg

0 kg/ha | **0** kg

Distance	30
from	
coast	km

SOILS

100% WAKA_1A.1

6 ha Pallic

PASTURE

Pasture growth	18,939 kg DM/ha/yr	Removed	0 kg DM/ha/yr
Utilisation	85 %	Dairy	29.04 rsu/ha
Intake	16,098 kg DM/ha/yr		

Block type	Pasture
Topography	Flat
Pasture type	Plantain
Cultivated in last 5 years	No
Animals present	Yes

Hydrophobic condition	Use default
Susceptibility to pugging	Occasional
Is compacted	No
Naturally high water table	No

	JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	
RSU/HA	ISU/HA												
Dairy	0.13	1.63	2.7	3.42	3.55	3.92	3.68	2.63	2.75	2.4	2.23	-	
FERTILISER APPL	IED (KG/HA)												
Ν	-	-	40	30	24	22	22	11	18	22	-	-	
Ρ	-	-	36	-	-	-	-	-	-	-	-	-	
К	-	-	-	-	-	-	-	-	-	-	-	-	
S	-	-	60	3	-	-	-	-	-	-	-	-	

			NITROGEN						PHOSPHORUS				
SOIL	IRRIGATOR	AREA	TOTAL LOST	LOST	DRAINAGE ¹	SURPLUS	ADDED ²	TOTAL LOST	LOST	SOIL P LOSS RISK	FERT P LOSS RISK	EFF P LOSS RISK	
Waka_1a.1	-	6 ha (100%)	57 kg	10 kg/ha	8 ppm	191 kg/ha	178 kg/ha	0 kg	0 kg/ha	Low	Low	N/A	

1 - N concentration due to leaching in drainage water at the bottom of the root zone.

2 - N added as fertiliser, effluent and organic only

SOIL/IRRIGATION - OTHER VALUES

							то е	50CM			TO 150CM			
SOIL	IRRIGATOR	AREA	DRAINAGE	RUNOFF	AET	FIELD CAPACITY	WILTING POINT	SATURATION	PAW	FIELD CAPACITY	WILTING POINT	SATURATION	PAW	
Waka_1a.1	-	6 ha (100%)	120 mm	0 mm	488 mm	207 mm	111 mm	264 mm	96 mm	-	-	-	-	

MODEL NOTES

Overview

Olsen P (38) is above that required for near maximum pasture production (30). See a consultant about reducing fertiliser P inputs. Note that on high producing dairy farms, target Olsen P levels are higher.

The change in inorganic soil pool indicates that additional fertiliser nutrients may be required to maintain production for K

Estimated change in soil test values for samples taken to 7.5cm:

- No change in Olsen P test
- Decrease in QT K test of 1 units
- No change in QT Mg test

Soil is slowly acidifying and would be neutralised by a maintenance lime application of 200 kg/ha/yr pure lime. Review soil pH and lime requirement.

NUTRIENT BUDGET

	TOTAL LOS	S (KG/YR)			LOSS PER HA (KG/YR)					
Nitrogen	57				10					
Phosphorus	0				0					
NUTRIENTS ADDED (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Effluent added	~	0	0	0	0	0	0	0		
Fertiliser, lime and other	~	178	36	0	63	80	0	0		
Irrigation		0	0	0	0	0	0	0		
Supplements fed on blocks	~	45	4	39	3	8	3	2		
Rain/clover fixation	~	135	0	2	4	2	4	16		
NUTRIENTS REMOVED (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Leaching, runoff and direct losses	~	10	0	29	66	55	1	11		
As product		105	18	25	6	23	2	7		
Transfer	~	62	5	52	3	10	3	2		
Effluent exported		0	0	0	0	0	0	0		
To atmosphere	~	70	0	0	0	0	0	0		
As supplements and crop residues		0	0	0	0	0	0	0		
CHANGE IN POOLS (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Organic pool		112	16	0	-4	0	0	0		
Inorganic mineral	~	0	1	-21	0	-1	-2	-2		
Inorganic soil pool		0	0	-45	0	3	1	0		

South pivot - Eff (Waka_3a.1) Pasture - Flat, 8.9 ha

BLOCK DETAILS										
Area	8.9 ha	0	Average rainfall	Annual PET	923 mm/yr	Latitude	-43.6444	Longitude	172.4433	
Dictorco										

30 kg/ha | **266** kg

0.7 kg/ha | **6** kg

Distance	30
from	20
	km
coast	

SOILS

100% WAKA_3A.1

8.9 ha Pallic

PASTURE

Pasture growth	18,939 kg DM/ha/yr	Removed	0 kg DM/ha/yr
Utilisation	85 %	Dairy	29.04 rsu/ha
Intake	16,098 kg DM/ha/yr		

Block type	Pasture
Topography	Flat
Pasture type	Ryegrass/white clover
Cultivated in last 5 y	/ears No
Animals present	Yes

Hydrophobic condition	Use default
Susceptibility to pugging	Occasional
ls compacted	No
Naturally high water table	No

	JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN
RSU/HA												
Dairy	0.13	1.63	2.7	3.42	3.55	3.92	3.68	2.63	2.75	2.4	2.23	-
FERTILISER APPLI	iertiliser Applied (KG/HA)											
N	-	-	40	30	24	22	22	11	18	22	-	-
Р	-	-	36	-	-	-	-	-	-	-	-	-
К	-	-	-	-	-	-	-	-	-	-	-	-
S	-	-	60	3	-	-	-	-	-	-	-	-
IRRIGATION APPL	IED (MM)											
Avg applied (mm)	-	-	18	42	72	84	102	72	36	24	-	-
SOUTH PIVOT (LIN	NEAR AND CENTRE	PIVOT): OVERSEER	DEFAULT (FIXED)	N:2.5 P:0.1 K:1.6 S:2	2.5 CA:9.3 MG:2.2 N	IA:9.5						
Supplied (mm)	-	-	19	44	76	88	107	76	38	25	-	-
Applied (mm)	-	-	18	42	72	84	102	72	36	24	-	-
Depth (mm)	-	-	6	6	6	6	6	6	6	6	-	-
Return (days)	-	-	1	1	1	1	1	1	1	1	-	-

	NITROGEN					PHOSPHORUS						
SOIL	IRRIGATOR	AREA	TOTAL LOST	LOST	DRAINAGE ¹	SURPLUS	ADDED ²	TOTAL LOST	LOST	SOIL P LOSS RISK	FERT P LOSS RISK	EFF P LOSS RISK
Waka_3a.1	South Pivot	8.9 ha (100%)	266 kg	30 kg/ha	16.4 ppm	238 kg/ha	231 kg/ha	6 kg	0.7 kg/ha	Low	Low	Low

1 - N concentration due to leaching in drainage water at the bottom of the root zone.

2 - N added as fertiliser, effluent and organic only

SOIL/IRRIGATION - OTHER VALUES

						то 60СМ				ТО 150СМ			
SOIL	IRRIGATOR	AREA	DRAINAGE	RUNOFF	AET	FIELD CAPACITY	WILTING POINT	SATURATION	PAW	FIELD CAPACITY	WILTING POINT	SATURATION	PAW
Waka_3a.1	South Pivot	8.9 ha (100%)	190 mm	0 mm	891 mm	195 mm	96 mm	261 mm	99 mm	-	-	-	-

MODEL NOTES

Overview

Maintenance nutrient requirements for this block take account of nutrients added in effluent.

Olsen P (38) is above that required for near maximum pasture production (30). See a consultant about reducing fertiliser P inputs. Note that on high producing dairy farms, target Olsen P levels are higher.

Soil P loss status is high. Consider reducing Olsen P levels.

Fertiliser P loss is greater than 10% of total P loss - this is outside the range of data available for New Zealand and P loss data should be used with caution. Potential P loss from fertiliser is high. Check fertiliser rates are not too high. If P is applied in high risk months consider alternative months of application or changing the form of P.

The change in inorganic soil pool indicates that fertiliser nutrients can be reduced for Ca

Estimated change in soil test values for samples taken to 7.5cm:

- Increase in Olsen P test of 1 units
- No change in QT K test
- Increase in QT Mg test of 2 units

N losses from the root zone from this block exceed 11.3 ppm. This could contribute to high drinking water levels. The drinking water standard is 11.3 ppm. Note that the drinking water standard is not a environmental water quality standard, which is usually lower than the drinking water standard or a regulatory standard.Consider mitigation options to reduce this loss

Soil is slowly acidifying and would be neutralised by a maintenance lime application of 210 kg/ha/yr pure lime. Review soil pH and lime requirement.

NUTRIENT BUDGET

	TOTAL LOS	S (KG/YR)			LOSS PER HA (KG/YR)				
Nitrogen	266				30				
Phosphorus	6				0.7				
NUTRIENTS ADDED (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA	
Effluent added	~	53	5	63	4	8	3	2	
Fertiliser, lime and other	~	178	36	0	63	80	0	0	
Irrigation		12	0	8	12	44	10	45	
Supplements fed on blocks	~	45	4	39	3	8	3	2	
Rain/clover fixation	~	117	0	2	4	2	4	16	
NUTRIENTS REMOVED (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA	
Leaching, runoff and direct losses	~	30	0.7	29	81	72	2	16	
As product		105	18	25	6	23	2	7	
Transfer	~	62	5	52	3	10	3	2	
Effluent exported		0	0	0	0	0	0	0	
To atmosphere	~	87	0	0	0	0	0	0	
As supplements and crop residues		0	0	0	0	0	0	0	
CHANGE IN POOLS (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA	
Organic pool		121	16	0	-4	0	0	0	
Inorganic mineral	~	0	1	-12	0	-1	-2	-2	
Inorganic soil pool		0	4	17	0	39	14	42	

South pivot - Eff (Flax_4a.1) Pasture - Flat, 17 ha

BLOCK DETAILS												
Area	17 ha	Average temp	12.1 °C	Average rainfall	609 mm/yr	Annual PET	923 mm/yr	Latitude	-43.6444	Longitude	172.4433	
Distanco												

27 kg/ha | 452 kg

0.6 kg/ha | **9** kg

Distance	30	
from	km	
coast	KITI	

SOILS

100% FLAX_4A.1

17 ha Gley

PASTURE

Pasture growth	18,939 kg DM/ha/yr	Removed	0 kg DM/ha/yr
Utilisation	85 %	Dairy	29.04 rsu/ha
Intake	16,098 kg DM/ha/yr		

Block type	Pasture
Topography	Flat
Pasture type	Ryegrass/white clover
Cultivated in last 5	years No
Animals present	Yes

Hydrophobic condition	Use default
Susceptibility to pugging	Occasional
Is compacted	No
Naturally high water table	No

	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	
RSU/HA	ISU/HA												
Dairy	0.13	1.63	2.7	3.42	3.55	3.92	3.68	2.63	2.75	2.4	2.23	-	
FERTILISER APPLIED (KG/HA)													
N	-	-	40	30	24	22	22	11	18	22	-	-	
Р	-	-	36	-	-	-	-	-	-	-	-	-	
К	-	-	-	-	-	-	-	-	-	-	-	-	
S	-	-	60	3	-	-	-	-	-	-	-	-	
IRRIGATION APPL	IED (MM)												
Avg applied (mm)	-	-	18	42	72	84	102	72	36	24	-	-	
SOUTH PIVOT (LIN	VEAR AND CENTRE	PIVOT): OVERSEER	DEFAULT (FIXED)	N:2.5 P:0.1 K:1.6 S:2	5 CA:9.3 MG:2.2 N	A:9.5							
Supplied (mm)	-	-	19	44	76	88	107	76	38	25	-	-	
Applied (mm)	-	-	18	42	72	84	102	72	36	24	-	-	
Depth (mm)	-	-	6	6	6	6	6	6	6	6	-	-	
Return (days)	-	-	1	1	1	1	1	1	1	1	-	-	

	-		NITROGEN					PHOSPHORUS				
SOIL	IRRIGATOR	AREA	TOTAL LOST	LOST	DRAINAGE ¹	SURPLUS	ADDED ²	TOTAL LOST	LOST	SOIL P LOSS RISK	FERT P LOSS RISK	EFF P LOSS RISK
Flax_4a.1	South Pivot	17 ha (100%)	452 kg	27 kg/ha	14.6 ppm	240 kg/ha	231 kg/ha	9 kg	0.6 kg/ha	Low	Low	Low

1 - N concentration due to leaching in drainage water at the bottom of the root zone.

2 - N added as fertiliser, effluent and organic only

SOIL/IRRIGATION - OTHER VALUES

							то е	юсм			TO 1	50CM	
SOIL	IRRIGATOR	AREA	DRAINAGE	RUNOFF	AET	FIELD CAPACITY	WILTING POINT	SATURATION	PAW	FIELD CAPACITY	WILTING POINT	SATURATION	PAW
Flax_4a.1	South Pivot	17 ha (100%)	190 mm	0 mm	891 mm	249 mm	144 mm	300 mm	105 mm	-	-	-	-

MODEL NOTES

Overview

Maintenance nutrient requirements for this block take account of nutrients added in effluent.

Olsen P (38) is above that required for near maximum pasture production (30). See a consultant about reducing fertiliser P inputs. Note that on high producing dairy farms, target Olsen P levels are higher.

Soil P loss status is high. Consider reducing Olsen P levels.

Fertiliser P loss is greater than 10% of total P loss - this is outside the range of data available for New Zealand and P loss data should be used with caution. Potential P loss from fertiliser is high. Check fertiliser rates are not too high. If P is applied in high risk months consider alternative months of application or changing the form of P.

The change in inorganic soil pool indicates that fertiliser nutrients can be reduced for Ca

Estimated change in soil test values for samples taken to 7.5cm:

- Increase in Olsen P test of 1 units
- No change in QT K test
- Increase in QT Mg test of 2 units

N losses from the root zone from this block exceed 11.3 ppm. This could contribute to high drinking water levels. The drinking water standard is 11.3 ppm. Note that the drinking water standard is not a environmental water quality standard, which is usually lower than the drinking water standard or a regulatory standard.Consider mitigation options to reduce this loss

Soil is slowly acidifying and would be neutralised by a maintenance lime application of 200 kg/ha/yr pure lime. Review soil pH and lime requirement.

NUTRIENT BUDGET

	TOTAL LOS	S (KG/YR)			LOSS PER HA (KG/YR)					
Nitrogen	452				27					
Phosphorus	9				0.6	0.6				
NUTRIENTS ADDED (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Effluent added	~	53	5	63	4	8	3	2		
Fertiliser, lime and other	~	178	36	0	63	80	0	0		
Irrigation		12	0	8	12	44	10	45		
Supplements fed on blocks	~	45	4	39	3	8	3	2		
Rain/clover fixation	~	120	0	2	4	2	4	16		
NUTRIENTS REMOVED (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Leaching, runoff and direct losses	~	27	0.6	29	81	69	2	16		
As product		105	18	25	6	23	2	7		
Transfer	~	62	5	52	3	10	3	2		
Effluent exported		0	0	0	0	0	0	0		
To atmosphere	~	95	0	0	0	0	0	0		
As supplements and crop residues		0	0	0	0	0	0	0		
CHANGE IN POOLS (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Organic pool		119	13	0	-4	0	0	0		
Inorganic mineral	~	0	4	-12	0	-1	-2	-2		
Inorganic soil pool		0	5	16	0	41	14	42		

South pivot - Eff (Flax_4a.1) PL Pasture - Flat, 2.2 ha

BLOCK DETAILS												
Area	2.2 ha	Average temp	12.1 °C	Average rainfall	609 mm/yr	Annual PET	923 mm/yr	Latitude	-43.6444	Longitude	172.4433	
D: .												

8 kg/ha | 17 kg

0 kg/ha | **0** kg

Distance	30
from	
coast	km

SOILS

100% FLAX_4A.1

2.2 ha Gley

PASTURE

Pasture growth	18,939 kg DM/ha/yr	Removed	0 kg DM/ha/yr
Utilisation	85 %	Dairy	29.04 rsu/ha
Intake	16,098 kg DM/ha/yr		

Block type	Pasture
Topography	Flat
Pasture type	Plantain
Cultivated in last 5 years	No
Animals present	Yes

Use default
Occasional
No
No

	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN
RSU/HA	RSU/HA											
Dairy	0.13	1.63	2.7	3.42	3.55	3.92	3.68	2.63	2.75	2.4	2.23	-
FERTILISER APPL	FERTILISER APPLIED (KG/HA)											
N	-	-	40	30	24	22	22	11	18	22	-	-
Р	-	-	36	-	-	-	-	-	-	-	-	-
К	-	-	-	-	-	-	-	-	-	-	-	-
S	-	-	60	3	-	-	-	-	-	-	-	-

	NITROGEN						PHOSPHORUS					
SOIL	IRRIGATOR	AREA	TOTAL LOST	LOST	DRAINAGE ¹	SURPLUS	ADDED ²	TOTAL LOST	LOST	SOIL P LOSS RISK	FERT P LOSS RISK	EFF P LOSS RISK
Flax_4a.1	-	2.2 ha (100%)	17 kg	8 kg/ha	6.8 ppm	189 kg/ha	178 kg/ha	0 kg	0 kg/ha	Low	Low	N/A

1 - N concentration due to leaching in drainage water at the bottom of the root zone.

2 - N added as fertiliser, effluent and organic only

SOIL/IRRIGATION - OTHER VALUES

							то е	юсм			TO 1	50CM	
SOIL	IRRIGATOR	AREA	DRAINAGE	RUNOFF	AET	FIELD CAPACITY	WILTING POINT	SATURATION	PAW	FIELD CAPACITY	WILTING POINT	SATURATION	PAW
Flax_4a.1	-	2.2 ha (100%)	112 mm	0 mm	497 mm	249 mm	144 mm	300 mm	105 mm	-	-	-	-

MODEL NOTES

Overview

Olsen P (38) is above that required for near maximum pasture production (30). See a consultant about reducing fertiliser P inputs. Note that on high producing dairy farms, target Olsen P levels are higher.

The change in inorganic soil pool indicates that additional fertiliser nutrients may be required to maintain production for K

Estimated change in soil test values for samples taken to 7.5cm:

- No change in Olsen P test
- Decrease in QT K test of 1 units
- No change in QT Mg test

Soil is slowly acidifying and would be neutralised by a maintenance lime application of 190 kg/ha/yr pure lime. Review soil pH and lime requirement.

NUTRIENT BUDGET

	TOTAL LOS	S (KG/YR)			LOSS PER HA (KG/YR)					
Nitrogen	17				8					
Phosphorus	0				0					
NUTRIENTS ADDED (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Effluent added	~	0	0	0	0	0	0	0		
Fertiliser, lime and other	~	178	36	0	63	80	0	0		
Irrigation		0	0	0	0	0	0	0		
Supplements fed on blocks	~	45	4	39	3	8	3	2		
Rain/clover fixation	~	133	0	2	4	2	4	16		
NUTRIENTS REMOVED (KG/HA/YR)		N	Р	К	S	CA	MG	NA		
Leaching, runoff and direct losses	~	8	0	29	66	54	1	11		
As product		105	18	25	6	23	2	7		
Transfer	~	62	5	52	3	10	3	2		
Effluent exported		0	0	0	0	0	0	0		
To atmosphere	~	70	0	0	0	0	0	0		
As supplements and crop residues		0	0	0	0	0	0	0		
CHANGE IN POOLS (KG/HA/YR)		Ν	Р	к	S	CA	MG	NA		
Organic pool		111	13	0	-4	0	0	0		
Inorganic mineral	~	0	4	-19	0	-1	-2	-2		
Inorganic soil pool		0	0	-47	0	4	1	1		

BLOCK DETAILS

Area	1.3 ha	Average temp	12.1 °С	Average rainfall	609 mm/yr	Annual PET	923 mm/yr	Latitude	-43.6444	Longitude	172.4433
Distance from coast	30 km										

Bush type Native

NUTRIENT BUDGET

LOSSES FROM ROOT ZONE

	TOTAL LOS	S (KG/YR)			LOSS PER HA (KG/YR)					
Nitrogen	4				3					
Phosphorus	0				0.1					
NUTRIENTS ADDED (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Rain/clover fixation	3	0	2	4	2	4	16			
NUTRIENTS REMOVED (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Leaching, runoff and direct losses	~	З	0.1	2	4	2	4	16		
CHANGE IN POOLS (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Inorganic mineral	0	0	0	0	0	0	0			

BLOCK DETAILS	e - 3.1 ha							N 5 kg	/ha 16 kg	P 0.5 kg	g/ha 2 kg
Area	3.1 ha	Average temp	12.1 ℃	Average rainfall	609 mm/yr	Annual PET	923 mm/yr	Latitude	-43.6444	Longitude	172.4433
Distance from coast	30 km										
Number of people	2										
Sewage disposal method	Conventional septic tank										

NUTRIENT BUDGET

	TOTAL LOS	SS (KG/YR)			LOSS PER HA (KG/YR)					
Nitrogen	16				5					
Phosphorus	2 0.5									
NUTRIENTS ADDED (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Sewage loading		4	1	1	1	1	0	5		
Rain/clover fixation	~	50	0	2	4	2	4	16		
NUTRIENTS REMOVED (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Leaching, runoff and direct losses	~	5	0.5	3	4	3	4	21		
To atmosphere		1	0	0	0	0	0	0		
CHANGE IN POOLS (KG/HA/YR)		Ν	Р	К	S	CA	MG	NA		
Organic pool		48	0	0	0	0	0	0		
Inorganic mineral		0	0	0	0	0	0	0		